亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A canonical problem in social choice is how to aggregate ranked votes: given $n$ voters' rankings over $m$ candidates, what voting rule $f$ should we use to aggregate these votes into a single winner? One standard method for comparing voting rules is by their satisfaction of axioms - properties that we want a "reasonable" rule to satisfy. Unfortunately, this approach leads to several impossibilities: no voting rule can simultaneously satisfy all the properties we want, at least in the worst case over all possible inputs. Motivated by this, we consider a relaxation of these worst case requirements. We do so using a "smoothed" model of social choice, where votes are perturbed with small amounts of noise. If, no matter which input profile we start with, the probability (post-noise) of an axiom being satisfied is large, we will consider the axiom as good as satisfied - called "smoothed-satisfied" - even if it may be violated in the worst case. Our model is a mild restriction of Lirong Xia's, and corresponds closely to that in Spielman and Teng's original work on smoothed analysis. Much work has been done so far in several papers by Xia on axiom satisfaction under such noise. In our paper, we aim to give a more cohesive overview on when smoothed analysis of social choice is useful. Within our model, we give simple sufficient conditions for smoothed-satisfaction or smoothed-violation of several previously-unstudied axioms and paradoxes, plus many of those studied by Xia. We then observe that, in a practically important subclass of noise models, although convergence eventually occurs, known rates may require an extremely large number of voters. Motivated by this, we prove bounds specifically within a canonical noise model from this subclass - the Mallows model. Here, we present a more nuanced picture on exactly when smoothed analysis can help.

相關內容

In the context of unsupervised learning, Lloyd's algorithm is one of the most widely used clustering algorithms. It has inspired a plethora of work investigating the correctness of the algorithm under various settings with ground truth clusters. In particular, in 2016, Lu and Zhou have shown that the mis-clustering rate of Lloyd's algorithm on $n$ independent samples from a sub-Gaussian mixture is exponentially bounded after $O(\log(n))$ iterations, assuming proper initialization of the algorithm. However, in many applications, the true samples are unobserved and need to be learned from the data via pre-processing pipelines such as spectral methods on appropriate data matrices. We show that the mis-clustering rate of Lloyd's algorithm on perturbed samples from a sub-Gaussian mixture is also exponentially bounded after $O(\log(n))$ iterations under the assumptions of proper initialization and that the perturbation is small relative to the sub-Gaussian noise. In canonical settings with ground truth clusters, we derive bounds for algorithms such as $k$-means$++$ to find good initializations and thus leading to the correctness of clustering via the main result. We show the implications of the results for pipelines measuring the statistical significance of derived clusters from data such as SigClust. We use these general results to derive implications in providing theoretical guarantees on the misclustering rate for Lloyd's algorithm in a host of applications, including high-dimensional time series, multi-dimensional scaling, and community detection for sparse networks via spectral clustering.

Given $k$ input graphs $G_1, \dots ,G_k$, where each pair $G_i$, $G_j$ with $i \neq j$ shares the same graph $G$, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on $G$. While SEFE is still open for the case of two input graphs, the problem is NP-complete for $k \geq 3$ [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to $k$ plus the vertex cover number or the feedback edge set number of the the union graph $G^\cup = G_1 \cup \dots \cup G_k$. Regarding the shared graph $G$, we show that SEFE is NP-complete, even if $G$ is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of $G$, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.

The dynamics of affective decision making is considered for an intelligent network composed of agents with different types of memory: long-term and short-term memory. The consideration is based on probabilistic affective decision theory, which takes into account the rational utility of alternatives as well as the emotional alternative attractiveness. The objective of this paper is the comparison of two multistep operational algorithms of the intelligent network: one based on discrete dynamics and the other on continuous dynamics. By means of numerical analysis, it is shown that, depending on the network parameters, the characteristic probabilities for continuous and discrete operations can exhibit either close or drastically different behavior. Thus, depending on which algorithm is employed, either discrete or continuous, theoretical predictions can be rather different, which does not allow for a uniquely defined description of practical problems. This finding is important for understanding which of the algorithms is more appropriate for the correct analysis of decision-making tasks. A discussion is given, revealing that the discrete operation seems to be more realistic for describing intelligent networks as well as affective artificial intelligence.

Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario, where a detection model is required to be capable of detecting both known and unknown objects and incrementally learning newly introduced knowledge. Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns, whose performance relies heavily on the supervision of known objects. While they can detect the unknowns that exhibit similar features to the known objects, they suffer from a severe label bias problem that they tend to detect all regions (including unknown object regions) that are dissimilar to the known objects as part of the background. To eliminate the label bias, this paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects from raw pseudo labels generated by unsupervised region proposal methods. The resulting model can be further refined by a classification-free self-training method which iteratively extends pseudo unknown objects to the unlabeled regions. Experimental results show that our method 1) significantly outperforms the prior SOTA in detecting unknown objects while maintaining competitive performance of detecting known object classes on the MS COCO dataset, and 2) achieves better generalization ability on the LVIS and Objects365 datasets.

Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司