Recent work has demonstrated the catastrophic effects of poor cardinality estimates on query processing time. In particular, underestimating query cardinality can result in overly optimistic query plans which take orders of magnitude longer to complete than one generated with the true cardinality. Cardinality bounding avoids this pitfall by computing a strict upper bound on the query's output size using statistics about the database such as table sizes and degrees, i.e. value frequencies. In this paper, we extend this line of work by proving a novel bound called the Degree Sequence Bound which takes into account the full degree sequences and the max tuple multiplicity. This bound improves upon previous work incorporating degree constraints which focused on the maximum degree rather than the degree sequence. Further, we describe how to practically compute this bound using a learned approximation of the true degree sequences.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.
In this paper, we consider a resilient consensus problem for the multi-agent network where some of the agents are subject to Byzantine attacks and may transmit erroneous state values to their neighbors. In particular, we develop an event-triggered update rule to tackle this problem as well as reduce the communication for each agent. Our approach is based on the mean subsequence reduced (MSR) algorithm with agents being capable to communicate with multi-hop neighbors. Since delays are critical in such an environment, we provide necessary graph conditions for the proposed algorithm to perform well with delays in the communication. We highlight that through multi-hop communication, the network connectivity can be reduced especially in comparison with the common onehop communication case. Lastly, we show the effectiveness of the proposed algorithm by a numerical example.
Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
The instrumental variable method is widely used in the health and social sciences for identification and estimation of causal effects in the presence of potentially unmeasured confounding. In order to improve efficiency, multiple instruments are routinely used, leading to concerns about bias due to possible violation of the instrumental variable assumptions. To address this concern, we introduce a new class of g-estimators that are guaranteed to remain consistent and asymptotically normal for the causal effect of interest provided that a set of at least $\gamma$ out of $K$ candidate instruments are valid, for $\gamma\leq K$ set by the analyst ex ante, without necessarily knowing the identities of the valid and invalid instruments. We provide formal semiparametric efficiency theory supporting our results. Both simulation studies and applications to the UK Biobank data demonstrate the superior empirical performance of our estimators compared to competing methods.
We consider smooth optimization problems with a Hermitian positive semi-definite fixed-rank constraint, where a quotient geometry with three Riemannian metrics $g^i(\cdot, \cdot)$ $(i=1,2,3)$ is used to represent this constraint. By taking the nonlinear conjugate gradient method (CG) as an example, we show that CG on the quotient geometry with metric $g^1$ is equivalent to CG on the factor-based optimization framework, which is often called the Burer--Monteiro approach. We also show that CG on the quotient geometry with metric $g^3$ is equivalent to CG on the commonly-used embedded geometry. We call two CG methods equivalent if they produce an identical sequence of iterates $\{X_k\}$. In addition, we show that if the limit point of the sequence $\{X_k\}$ generated by an algorithm has lower rank, that is $X_k\in \mathbb C^{n\times n}, k = 1, 2, \ldots$ has rank $p$ and the limit point $X_*$ has rank $r < p$, then the condition number of the Riemannian Hessian with metric $g^1$ can be unbounded, but those of the other two metrics stay bounded. Numerical experiments show that the Burer--Monteiro CG method has slower local convergence rate if the limit point has a reduced rank, compared to CG on the quotient geometry under the other two metrics. This slower convergence rate can thus be attributed to the large condition number of the Hessian near a minimizer.
We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.
Music Structure Analysis (MSA) consists in segmenting a music piece in several distinct sections. We approach MSA within a compression framework, under the hypothesis that the structure is more easily revealed by a simplified representation of the original content of the song. More specifically, under the hypothesis that MSA is correlated with similarities occurring at the bar scale, this article introduces the use of linear and non-linear compression schemes on barwise audio signals. Compressed representations capture the most salient components of the different bars in the song and are then used to infer the song structure using a dynamic programming algorithm. This work explores both low-rank approximation models such as Principal Component Analysis or Nonnegative Matrix Factorization and "piece-specific" Auto-Encoding Neural Networks, with the objective to learn latent representations specific to a given song. Such approaches do not rely on supervision nor annotations, which are well-known to be tedious to collect and possibly ambiguous in MSA description. In our experiments, several unsupervised compression schemes achieve a level of performance comparable to that of state-of-the-art supervised methods (for 3s tolerance) on the RWC-Pop dataset, showcasing the importance of the barwise compression processing for MSA.
Imposing consistency through proxy tasks has been shown to enhance data-driven learning and enable self-supervision in various tasks. This paper introduces novel and effective consistency strategies for optical flow estimation, a problem where labels from real-world data are very challenging to derive. More specifically, we propose occlusion consistency and zero forcing in the forms of self-supervised learning and transformation consistency in the form of semi-supervised learning. We apply these consistency techniques in a way that the network model learns to describe pixel-level motions better while requiring no additional annotations. We demonstrate that our consistency strategies applied to a strong baseline network model using the original datasets and labels provide further improvements, attaining the state-of-the-art results on the KITTI-2015 scene flow benchmark in the non-stereo category. Our method achieves the best foreground accuracy (4.33% in Fl-all) over both the stereo and non-stereo categories, even though using only monocular image inputs.
The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as "quantum combs"). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience.