Electronic health records (EHR) is an inherently multimodal register of the patient's health status characterized by static data and multivariate time series (MTS). While MTS are a valuable tool for clinical prediction, their fusion with other data modalities can possibly result in more thorough insights and more accurate results. Deep neural networks (DNNs) have emerged as fundamental tools for identifying and defining underlying patterns in the healthcare domain. However, fundamental improvements in interpretability are needed for DNN models to be widely used in the clinical setting. In this study, we present an approach built on a collection of interpretable multimodal data-driven models that may anticipate and understand the emergence of antimicrobial multidrug resistance (AMR) germs in the intensive care unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain). The profile and initial health status of the patient are modeled using static variables, while the evolution of the patient's health status during the ICU stay is modeled using several MTS, including mechanical ventilation and antibiotics intake. The multimodal DNNs models proposed in this paper include interpretable principles in addition to being effective at predicting AMR and providing an explainable prediction support system for AMR in the ICU. Furthermore, our proposed methodology based on multimodal models and interpretability schemes can be leveraged in additional clinical problems dealing with EHR data, broadening the impact and applicability of our results.
Successive interference cancellation (SIC) is used to approach the achievable information rates (AIRs) of joint detection and decoding for long-haul optical fiber links. The AIRs of memoryless ring constellations are compared to those of circularly symmetric complex Gaussian modulation for surrogate channel models with correlated phase noise. Simulations are performed for 1000 km of standard single-mode fiber with ideal Raman amplification. In this setup, 32 rings and 16 SIC-stages with Gaussian message-passing receivers achieve the AIR peaks of previous work. The computational complexity scales in proportion to the number of SIC-stages, where one stage has the complexity of separate detection and decoding.
Curating annotations for medical image segmentation is a labor-intensive and time-consuming task that requires domain expertise, resulting in "narrowly" focused deep learning (DL) models with limited translational utility. Recently, foundation models like the Segment Anything Model (SAM) have revolutionized semantic segmentation with exceptional zero-shot generalizability across various domains, including medical imaging, and hold a lot of promise for streamlining the annotation process. However, SAM has yet to be evaluated in a crowd-sourced setting to curate annotations for training 3D DL segmentation models. In this work, we explore the potential of SAM for crowd-sourcing "sparse" annotations from non-experts to generate "dense" segmentation masks for training 3D nnU-Net models, a state-of-the-art DL segmentation model. Our results indicate that while SAM-generated annotations exhibit high mean Dice scores compared to ground-truth annotations, nnU-Net models trained on SAM-generated annotations perform significantly worse than nnU-Net models trained on ground-truth annotations ($p<0.001$, all).
A large fraction of total healthcare expenditure occurs due to end-of-life (EOL) care, which means it is important to study the problem of more carefully incentivizing necessary versus unnecessary EOL care because this has the potential to reduce overall healthcare spending. This paper introduces a principal-agent model that integrates a mixed payment system of fee-for-service and pay-for-performance in order to analyze whether it is possible to better align healthcare provider incentives with patient outcomes and cost-efficiency in EOL care. The primary contributions are to derive optimal contracts for EOL care payments using a principal-agent framework under three separate models for the healthcare provider, where each model considers a different level of risk tolerance for the provider. We derive these optimal contracts by converting the underlying principal-agent models from a bilevel optimization problem into a single-level optimization problem that can be analytically solved. Our results are demonstrated using a simulation where an optimal contract is used to price intracranial pressure monitoring for traumatic brain injuries.
Electronic health record (EHR) systems contain a wealth of multimodal clinical data including structured data like clinical codes and unstructured data such as clinical notes. However, many existing EHR-focused studies has traditionally either concentrated on an individual modality or merged different modalities in a rather rudimentary fashion. This approach often results in the perception of structured and unstructured data as separate entities, neglecting the inherent synergy between them. Specifically, the two important modalities contain clinically relevant, inextricably linked and complementary health information. A more complete picture of a patient's medical history is captured by the joint analysis of the two modalities of data. Despite the great success of multimodal contrastive learning on vision-language, its potential remains under-explored in the realm of multimodal EHR, particularly in terms of its theoretical understanding. To accommodate the statistical analysis of multimodal EHR data, in this paper, we propose a novel multimodal feature embedding generative model and design a multimodal contrastive loss to obtain the multimodal EHR feature representation. Our theoretical analysis demonstrates the effectiveness of multimodal learning compared to single-modality learning and connects the solution of the loss function to the singular value decomposition of a pointwise mutual information matrix. This connection paves the way for a privacy-preserving algorithm tailored for multimodal EHR feature representation learning. Simulation studies show that the proposed algorithm performs well under a variety of configurations. We further validate the clinical utility of the proposed algorithm in real-world EHR data.
The widespread availability of publicly accessible medical images has significantly propelled advancements in various research and clinical fields. Nonetheless, concerns regarding unauthorized training of AI systems for commercial purposes and the duties of patient privacy protection have led numerous institutions to hesitate to share their images. This is particularly true for medical image segmentation (MIS) datasets, where the processes of collection and fine-grained annotation are time-intensive and laborious. Recently, Unlearnable Examples (UEs) methods have shown the potential to protect images by adding invisible shortcuts. These shortcuts can prevent unauthorized deep neural networks from generalizing. However, existing UEs are designed for natural image classification and fail to protect MIS datasets imperceptibly as their protective perturbations are less learnable than important prior knowledge in MIS, e.g., contour and texture features. To this end, we propose an Unlearnable Medical image generation method, termed UMed. UMed integrates the prior knowledge of MIS by injecting contour- and texture-aware perturbations to protect images. Given that our target is to only poison features critical to MIS, UMed requires only minimal perturbations within the ROI and its contour to achieve greater imperceptibility (average PSNR is 50.03) and protective performance (clean average DSC degrades from 82.18% to 6.80%).
Predictions of opaque black-box systems are frequently deployed in high-stakes applications such as healthcare. For such applications, it is crucial to assess how models handle samples beyond the domain of training data. While several metrics and tests exist to detect out-of-distribution (OoD) data from in-distribution (InD) data to a deep neural network (DNN), their performance varies significantly across datasets, models, and tasks, which limits their practical use. In this paper, we propose a hypothesis-driven approach to quantify whether a new sample is InD or OoD. Given a trained DNN and some input, we first feed the input through the DNN and compute an ensemble of OoD metrics, which we term latent responses. We then formulate the OoD detection problem as a hypothesis test between latent responses of different groups, and use permutation-based resampling to infer the significance of the observed latent responses under a null hypothesis. We adapt our method to detect an unseen sample of bacteria to a trained deep learning model, and show that it reveals interpretable differences between InD and OoD latent responses. Our work has implications for systematic novelty detection and informed decision-making from classifiers trained on a subset of labels.
High-quality, high-resolution medical imaging is essential for clinical care. Raman-based biomedical optical imaging uses non-ionizing infrared radiation to evaluate human tissues in real time and is used for early cancer detection, brain tumor diagnosis, and intraoperative tissue analysis. Unfortunately, optical imaging is vulnerable to image degradation due to laser scattering and absorption, which can result in diagnostic errors and misguided treatment. Restoration of optical images is a challenging computer vision task because the sources of image degradation are multi-factorial, stochastic, and tissue-dependent, preventing a straightforward method to obtain paired low-quality/high-quality data. Here, we present Restorative Step-Calibrated Diffusion (RSCD), an unpaired image restoration method that views the image restoration problem as completing the finishing steps of a diffusion-based image generation task. RSCD uses a step calibrator model to dynamically determine the severity of image degradation and the number of steps required to complete the reverse diffusion process for image restoration. RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation metrics for restoring optical images. Medical imaging experts consistently prefer images restored using RSCD in blinded comparison experiments and report minimal to no hallucinations. Finally, we show that RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging. Our code is available at //github.com/MLNeurosurg/restorative_step-calibrated_diffusion.
Detecting damage in critical structures using monitored data is a fundamental task of structural health monitoring, which is extremely important for maintaining structures' safety and life-cycle management. Based on statistical pattern recognition paradigm, damage detection can be conducted by assessing changes in the distribution of properly extracted damage-sensitive features (DSFs). This can be naturally formulated as a distributional change-point detection problem. A good change-point detector for damage detection should be scalable to large DSF datasets, applicable to different types of changes, and capable of controlling for false-positive indications. This study proposes a new distributional change-point detection method for damage detection to address these challenges. We embed the elements of a DSF distributional sequence into the Wasserstein space and construct a moving sum (MOSUM) multiple change-point detector based on Fr\'echet statistics and establish theoretical properties. Extensive simulation studies demonstrate the superiority of our proposed approach against other competitors to address the aforementioned practical requirements. We apply our method to the cable-tension measurements monitored from a long-span cable-stayed bridge for cable damage detection. We conduct a comprehensive change-point analysis for the extracted DSF data, and reveal interesting patterns from the detected changes, which provides valuable insights into cable system damage.
Automatic text summarization (ATS) is an emerging technology to assist clinicians in providing continuous and coordinated care. This study presents an approach to summarize doctor-patient dialogues using generative large language models (LLMs). We developed prompt-tuning algorithms to instruct generative LLMs to summarize clinical text. We examined the prompt-tuning strategies, the size of soft prompts, and the few-short learning ability of GatorTronGPT, a generative clinical LLM developed using 277 billion clinical and general English words with up to 20 billion parameters. We compared GatorTronGPT with a previous solution based on fine-tuning of a widely used T5 model, using a clinical benchmark dataset MTS-DIALOG. The experimental results show that the GatorTronGPT- 20B model achieved the best performance on all evaluation metrics. The proposed solution has a low computing cost as the LLM parameters are not updated during prompt-tuning. This study demonstrates the efficiency of generative clinical LLMs for clinical ATS through prompt tuning.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.