亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce exploration via linear loss perturbations (EVILL), a randomised exploration method for structured stochastic bandit problems that works by solving for the minimiser of a linearly perturbed regularised negative log-likelihood function. We show that, for the case of generalised linear bandits, EVILL reduces to perturbed history exploration (PHE), a method where exploration is done by training on randomly perturbed rewards. In doing so, we provide a simple and clean explanation of when and why random reward perturbations give rise to good bandit algorithms. With the data-dependent perturbations we propose, not present in previous PHE-type methods, EVILL is shown to match the performance of Thompson-sampling-style parameter-perturbation methods, both in theory and in practice. Moreover, we show an example outside of generalised linear bandits where PHE leads to inconsistent estimates, and thus linear regret, while EVILL remains performant. Like PHE, EVILL can be implemented in just a few lines of code.

相關內容

We discuss Cartan-Schouten metrics (Riemannian or pseudo-Riemannian metrics that are parallel with respect to the Cartan-Schouten canonical connection) on perfect Lie groups. Applications are foreseen in Information Geometry. Throughout this work, the tangent bundle TG and the cotangent bundle T*G of a Lie group G, are always endowed with their Lie group structures induced by the right trivialization. We show that TG and T*G are isomorphic if G possesses a biinvariant Riemannian or pseudo-Riemannian metric. We also show that, if on a perfect Lie group, there exists a Cartan-Schouten metric, then it must be biinvariant. We compute all such metrics on the cotangent bundles of simple Lie groups. We further show the following. Endowed with their canonical Lie group structures, the set of unit dual quaternions is isomorphic to TSU(2), the set of unit dual split quaternions is isomorphic to T*SL(2,R). The group SE(3) of special rigid displacements of the Euclidean 3-space is isomorphic to T*SO(3). The group SE(2,1) of special rigid displacements of the Minkowski 3-space is isomorphic to T*SO(2,1). Some results on SE(3) by N. Miolane and X. Pennec, and M. Zefran, V. Kumar and C. Croke, are generalized to SE(2,1) and to T*G, for any simple Lie group G.

In many jurisdictions, forensic evidence is presented in the form of categorical statements by forensic experts. Several large-scale performance studies have been performed that report error rates to elucidate the uncertainty associated with such categorical statements. There is growing scientific consensus that the likelihood ratio (LR) framework is the logically correct form of presentation for forensic evidence evaluation. Yet, results from the large-scale performance studies have not been cast in this framework. Here, I show how to straightforwardly calculate an LR for any given categorical statement using data from the performance studies. This number quantifies how much more we should believe the hypothesis of same source vs different source, when provided a particular expert witness statement. LRs are reported for categorical statements resulting from the analysis of latent fingerprints, bloodstain patterns, handwriting, footwear and firearms. The highest LR found for statements of identification was 376 (fingerprints), the lowest found for statements of exclusion was 1/28 (handwriting). The LRs found may be more insightful for those used to this framework than the various error rates reported previously. An additional advantage of using the LR in this way is the relative simplicity; there are no decisions necessary on what error rate to focus on or how to handle inconclusive statements. The values found are closer to 1 than many would have expected. One possible explanation for this mismatch is that we undervalue numerical LRs. Finally, a note of caution: the LR values reported here come from a simple calculation that does not do justice to the nuances of the large-scale studies and their differences to casework, and should be treated as ball-park figures rather than definitive statements on the evidential value of whole forensic scientific fields.

We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For both tasks, we test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations. Our results show that stochastic ensembles provide more accurate posterior estimates than other popular baselines for Bayesian inference.

We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.

A well-balanced second-order finite volume scheme is proposed and analyzed for a 2 X 2 system of non-linear partial differential equations which describes the dynamics of growing sandpiles created by a vertical source on a flat, bounded rectangular table in multiple dimensions. To derive a second-order scheme, we combine a MUSCL type spatial reconstruction with strong stability preserving Runge-Kutta time stepping method. The resulting scheme is ensured to be well-balanced through a modified limiting approach that allows the scheme to reduce to well-balanced first-order scheme near the steady state while maintaining the second-order accuracy away from it. The well-balanced property of the scheme is proven analytically in one dimension and demonstrated numerically in two dimensions. Additionally, numerical experiments reveal that the second-order scheme reduces finite time oscillations, takes fewer time iterations for achieving the steady state and gives sharper resolutions of the physical structure of the sandpile, as compared to the existing first-order schemes of the literature.

We study the bias of classical quantile regression and instrumental variable quantile regression estimators. While being asymptotically first-order unbiased, these estimators can have non-negligible second-order biases. We derive a higher-order stochastic expansion of these estimators using empirical process theory. Based on this expansion, we derive an explicit formula for the second-order bias and propose a feasible bias correction procedure that uses finite-difference estimators of the bias components. The proposed bias correction method performs well in simulations. We provide an empirical illustration using Engel's classical data on household expenditure.

We analyze the prediction error of principal component regression (PCR) and prove high probability bounds for the corresponding squared risk conditional on the design. Our first main result shows that PCR performs comparably to the oracle method obtained by replacing empirical principal components by their population counterparts, provided that an effective rank condition holds. On the other hand, if the latter condition is violated, then empirical eigenvalues start to have a significant upward bias, resulting in a self-induced regularization of PCR. Our approach relies on the behavior of empirical eigenvalues, empirical eigenvectors and the excess risk of principal component analysis in high-dimensional regimes.

We introduce a pressure robust Finite Element Method for the linearized Magnetohydrodynamics equations in three space dimensions, which is provably quasi-robust also in the presence of high fluid and magnetic Reynolds numbers. The proposed scheme uses a non-conforming BDM approach with suitable DG terms for the fluid part, combined with an $H^1$-conforming choice for the magnetic fluxes. The method introduces also a specific CIP-type stabilization associated to the coupling terms. Finally, the theoretical result are further validated by numerical experiments.

Accurate uncertainty quantification is crucial for the safe deployment of language models (LMs), and prior research has demonstrated improvements in the calibration of modern LMs. Our study focuses on in-context learning (ICL), a prevalent method for adapting static LMs through tailored prompts, and examines the balance between performance and calibration across a broad spectrum of natural language understanding and reasoning tasks. Through comprehensive experiments, we observe that, with an increasing number of ICL examples, models initially exhibit increased miscalibration before achieving better calibration and miscalibration tends to arise in low-shot settings. Moreover, we find that methods aimed at improving usability, such as fine-tuning and chain-of-thought (CoT) prompting, can lead to miscalibration and unreliable natural language explanations, suggesting that new methods may be required for scenarios where models are expected to be reliable.

In this paper, we tackle the following problem: compute the gcd for several univariate polynomials with parametric coefficients. It amounts to partitioning the parameter space into ``cells'' so that the gcd has a uniform expression over each cell and constructing a uniform expression of gcd in each cell. We tackle the problem as follows. We begin by making a natural and obvious extension of subresultant polynomials of two polynomials to several polynomials. Then we develop the following structural theories about them. 1. We generalize Sylvester's theory to several polynomials, in order to obtain an elegant relationship between generalized subresultant polynomials and the gcd of several polynomials, yielding an elegant algorithm. 2. We generalize Habicht's theory to several polynomials, in order to obtain a systematic relationship between generalized subresultant polynomials and pseudo-remainders, yielding an efficient algorithm. Using the generalized theories, we present a simple (structurally elegant) algorithm which is significantly more efficient (both in the output size and computing time) than algorithms based on previous approaches.

北京阿比特科技有限公司