亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Directed Acyclic Graph (DAG) can be partitioned or mapped into clusters to support and make inference more computationally efficient in Bayesian Network (BN), Markov process and other models. However, optimal partitioning with an arbitrary cost function is challenging, especially in statistical inference as the local cluster cost is dependent on both nodes within a cluster, and the mapping of clusters connected via parent and/or child nodes, which we call dependent clusters. We propose a novel algorithm called DCMAP for optimal cluster mapping with dependent clusters. Given an arbitrarily defined, positive cost function based on the DAG, we show that DCMAP converges to find all optimal clusters, and returns near-optimal solutions along the way. Empirically, we find that the algorithm is time-efficient for a Dynamic BN (DBN) model of a seagrass complex system using a computation cost function. For a 25 and 50-node DBN, the search space size was $9.91\times 10^9$ and $1.51\times10^{21}$ possible cluster mappings, and the first optimal solution was found at iteration 934 $(\text{95\% CI } 926,971)$, and 2256 $(2150,2271)$ with a cost that was 4\% and 0.2\% of the naive heuristic cost, respectively.

相關內容

The amount of information in satisfiability problem (SAT) is considered. SAT can be polynomial-time solvable when the solving algorithm holds an exponential amount of information. It is also established that SAT Kolmogorov complexity is constant. It is argued that the amount of information in SAT grows at least exponentially with the size of the input instance. The amount of information in SAT is compared with the amount of information in the fixed code algorithms and generated over runtime.

Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

Robotic Assisted Feeding (RAF) addresses the fundamental need for individuals with mobility impairments to regain autonomy in feeding themselves. The goal of RAF is to use a robot arm to acquire and transfer food to individuals from the table. Existing RAF methods primarily focus on solid foods, leaving a gap in manipulation strategies for semi-solid and deformable foods. This study introduces Long-horizon Visual Action (LAVA) based food acquisition of liquid, semisolid, and deformable foods. Long-horizon refers to the goal of "clearing the bowl" by sequentially acquiring the food from the bowl. LAVA employs a hierarchical policy for long-horizon food acquisition tasks. The framework uses high-level policy to determine primitives by leveraging ScoopNet. At the mid-level, LAVA finds parameters for primitives using vision. To carry out sequential plans in the real world, LAVA delegates action execution which is driven by Low-level policy that uses parameters received from mid-level policy and behavior cloning ensuring precise trajectory execution. We validate our approach on complex real-world acquisition trials involving granular, liquid, semisolid, and deformable food types along with fruit chunks and soup acquisition. Across 46 bowls, LAVA acquires much more efficiently than baselines with a success rate of 89 +/- 4% and generalizes across realistic plate variations such as different positions, varieties, and amount of food in the bowl. Code, datasets, videos, and supplementary materials can be found on our website.

This work addresses the problem of high-dimensional classification by exploring the generalized Bayesian logistic regression method under a sparsity-inducing prior distribution. The method involves utilizing a fractional power of the likelihood resulting the fractional posterior. Our study yields concentration results for the fractional posterior, not only on the joint distribution of the predictor and response variable but also for the regression coefficients. Significantly, we derive novel findings concerning misclassification excess risk bounds using sparse generalized Bayesian logistic regression. These results parallel recent findings for penalized methods in the frequentist literature. Furthermore, we extend our results to the scenario of model misspecification, which is of critical importance.

A fundamental aspect of statistics is the integration of data from different sources. Classically, Fisher and others were focused on how to integrate homogeneous (or only mildly heterogeneous) sets of data. More recently, as data are becoming more accessible, the question of if data sets from different sources should be integrated is becoming more relevant. The current literature treats this as a question with only two answers: integrate or don't. Here we take a different approach, motivated by information-sharing principles coming from the shrinkage estimation literature. In particular, we deviate from the do/don't perspective and propose a dial parameter that controls the extent to which two data sources are integrated. How far this dial parameter should be turned is shown to depend, for example, on the informativeness of the different data sources as measured by Fisher information. In the context of generalized linear models, this more nuanced data integration framework leads to relatively simple parameter estimates and valid tests/confidence intervals. Moreover, we demonstrate both theoretically and empirically that setting the dial parameter according to our recommendation leads to more efficient estimation compared to other binary data integration schemes.

Hidden Markov models (HMMs) are probabilistic methods in which observations are seen as realizations of a latent Markov process with discrete states that switch over time. Moving beyond standard statistical tests, HMMs offer a statistical environment to optimally exploit the information present in multivariate time series, uncovering the latent dynamics that rule them. Here, we extend the Poisson HMM to the multilevel framework, accommodating variability between individuals with continuously distributed individual random effects following a lognormal distribution, and describe how to estimate the model in a fully parametric Bayesian framework. The proposed multilevel HMM enables probabilistic decoding of hidden state sequences from multivariate count time-series based on individual-specific parameters, and offers a framework to quantificate between-individual variability formally. Through a Monte Carlo study we show that the multilevel HMM outperforms the HMM for scenarios involving heterogeneity between individuals, demonstrating improved decoding accuracy and estimation performance of parameters of the emission distribution, and performs equally well when not between heterogeneity is present. Finally, we illustrate how to use our model to explore the latent dynamics governing complex multivariate count data in an empirical application concerning pilot whale diving behaviour in the wild, and how to identify neural states from multi-electrode recordings of motor neural cortex activity in a macaque monkey in an experimental set up. We make the multilevel HMM introduced in this study publicly available in the R-package mHMMbayes in CRAN.

Place recognition is crucial for robot localization and loop closure in simultaneous localization and mapping (SLAM). Light Detection and Ranging (LiDAR), known for its robust sensing capabilities and measurement consistency even in varying illumination conditions, has become pivotal in various fields, surpassing traditional imaging sensors in certain applications. Among various types of LiDAR, spinning LiDARs are widely used, while non-repetitive scanning patterns have recently been utilized in robotics applications. Some LiDARs provide additional measurements such as reflectivity, Near Infrared (NIR), and velocity from Frequency modulated continuous wave (FMCW) LiDARs. Despite these advances, there is a lack of comprehensive datasets reflecting the broad spectrum of LiDAR configurations for place recognition. To tackle this issue, our paper proposes the HeLiPR dataset, curated especially for place recognition with heterogeneous LiDARs, embodying spatiotemporal variations. To the best of our knowledge, the HeLiPR dataset is the first heterogeneous LiDAR dataset supporting inter-LiDAR place recognition with both non-repetitive and spinning LiDARs, accommodating different field of view (FOV)s and varying numbers of rays. The dataset covers diverse environments, from urban cityscapes to high-dynamic freeways, over a month, enhancing adaptability and robustness across scenarios. Notably, HeLiPR includes trajectories parallel to MulRan sequences, making it valuable for research in heterogeneous LiDAR place recognition and long-term studies. The dataset is accessible at //sites.google.com/view/heliprdataset.

Most currently used tensor regression models for high-dimensional data are based on Tucker decomposition, which has good properties but loses its efficiency in compressing tensors very quickly as the order of tensors increases, say greater than four or five. However, for the simplest tensor autoregression in handling time series data, its coefficient tensor already has the order of six. This paper revises a newly proposed tensor train (TT) decomposition and then applies it to tensor regression such that a nice statistical interpretation can be obtained. The new tensor regression can well match the data with hierarchical structures, and it even can lead to a better interpretation for the data with factorial structures, which are supposed to be better fitted by models with Tucker decomposition. More importantly, the new tensor regression can be easily applied to the case with higher order tensors since TT decomposition can compress the coefficient tensors much more efficiently. The methodology is also extended to tensor autoregression for time series data, and nonasymptotic properties are derived for the ordinary least squares estimations of both tensor regression and autoregression. A new algorithm is introduced to search for estimators, and its theoretical justification is also discussed. Theoretical and computational properties of the proposed methodology are verified by simulation studies, and the advantages over existing methods are illustrated by two real examples.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司