Combining ideas coming from Stone duality and Reynolds parametricity, we formulate in a clean and principled way a notion of profinite lambda-term which, we show, generalizes at every type the traditional notion of profinite word coming from automata theory. We start by defining the Stone space of profinite lambda-terms as a projective limit of finite sets of usual lambda-terms, considered modulo a notion of equivalence based on the finite standard model. One main contribution of the paper is to establish that, somewhat surprisingly, the resulting notion of profinite lambda-term coming from Stone duality lives in perfect harmony with the principles of Reynolds parametricity. In addition, we show that the notion of profinite lambda-term is compositional by constructing a cartesian closed category of profinite lambda-terms, and we establish that the embedding from lambda-terms modulo beta-eta-conversion to profinite lambda-terms is faithful using Statman's finite completeness theorem. Finally, we prove that the traditional Church encoding of finite words into lambda-terms can be extended to profinite words, and leads to a homeomorphism between the space of profinite words and the space of profinite lambda-terms of the corresponding Church type.
We introduce a new consistency-based approach for defining and solving nonnegative/positive matrix and tensor completion problems. The novelty of the framework is that instead of artificially making the problem well-posed in the form of an application-arbitrary optimization problem, e.g., minimizing a bulk structural measure such as rank or norm, we show that a single property/constraint: preserving unit-scale consistency, guarantees the existence of both a solution and, under relatively weak support assumptions, uniqueness. The framework and solution algorithms also generalize directly to tensors of arbitrary dimensions while maintaining computational complexity that is linear in problem size for fixed dimension d. In the context of recommender system (RS) applications, we prove that two reasonable properties that should be expected to hold for any solution to the RS problem are sufficient to permit uniqueness guarantees to be established within our framework. Key theoretical contributions include a general unit-consistent tensor-completion framework with proofs of its properties, e.g., consensus-order and fairness, and algorithms with optimal runtime and space complexities, e.g., O(1) term-completion with preprocessing complexity that is linear in the number of known terms of the matrix/tensor. From a practical perspective, the seamless ability of the framework to generalize to exploit high-dimensional structural relationships among key state variables, e.g., user and product attributes, offers a means for extracting significantly more information than is possible for alternative methods that cannot generalize beyond direct user-product relationships. Finally, we propose our consensus ordering property as an admissibility criterion for any proposed RS method.
We define the complexity of a continuous-time linear system to be the minimum number of bits required to describe its forward increments to a desired level of fidelity, and compute this quantity using the rate distortion function of a Gaussian source of uncertainty in those increments. The complexity of a linear system has relevance in control-communications contexts requiring local and dynamic decision-making based on sampled data representations. We relate this notion of complexity to the design of attention-varying controllers, and demonstrate a novel methodology for constructing source codes via the endpoint maps of so-called emulating systems, with potential for non-parametric, data-based simulation and analysis of unknown dynamical systems.
We study the facility location problems where agents are located on a real line and divided into groups based on criteria such as ethnicity or age. Our aim is to design mechanisms to locate a facility to approximately minimize the costs of groups of agents to the facility fairly while eliciting the agents' locations truthfully. We first explore various well-motivated group fairness cost objectives for the problems and show that many natural objectives have an unbounded approximation ratio. We then consider minimizing the maximum total group cost and minimizing the average group cost objectives. For these objectives, we show that existing classical mechanisms (e.g., median) and new group-based mechanisms provide bounded approximation ratios, where the group-based mechanisms can achieve better ratios. We also provide lower bounds for both objectives. To measure fairness between groups and within each group, we study a new notion of intergroup and intragroup fairness (IIF) . We consider two IIF objectives and provide mechanisms with tight approximation ratios.
We consider the problem of solving linear least squares problems in a framework where only evaluations of the linear map are possible. We derive randomized methods that do not need any other matrix operations than forward evaluations, especially no evaluation of the adjoint map is needed. Our method is motivated by the simple observation that one can get an unbiased estimate of the application of the adjoint. We show convergence of the method and then derive a more efficient method that uses an exact linesearch. This method, called random descent, resembles known methods in other context and has the randomized coordinate descent method as special case. We provide convergence analysis of the random descent method emphasizing the dependence on the underlying distribution of the random vectors. Furthermore we investigate the applicability of the method in the context of ill-posed inverse problems and show that the method can have beneficial properties when the unknown solution is rough. We illustrate the theoretical findings in numerical examples. One particular result is that the random descent method actually outperforms established transposed-free methods (TFQMR and CGS) in examples.
In clustering problems, a central decision-maker is given a complete metric graph over vertices and must provide a clustering of vertices that minimizes some objective function. In fair clustering problems, vertices are endowed with a color (e.g., membership in a group), and the features of a valid clustering might also include the representation of colors in that clustering. Prior work in fair clustering assumes complete knowledge of group membership. In this paper, we generalize prior work by assuming imperfect knowledge of group membership through probabilistic assignments. We present clustering algorithms in this more general setting with approximation ratio guarantees. We also address the problem of "metric membership", where different groups have a notion of order and distance. Experiments are conducted using our proposed algorithms as well as baselines to validate our approach and also surface nuanced concerns when group membership is not known deterministically.
Finding the shortest travelling tour of vehicles with capacity k from the depot to the customers is called the Capacity vehicle routing problem (CVRP). CVRP plays an essential position in logistics systems, and it is the most intensively studied problem in combinatorial optimization. In complexity, CVRP with k $\ge$ 3 is an NP-hard problem, and it is APX-hard as well. We already knew that it could not be approximated in metric space. Moreover, it is the first problem resisting Arora's famous approximation framework. So, whether there is, a polynomial-time (1+$\epsilon$)-approximation for the Euclidean CVRP for any $\epsilon>0$ is still an open problem. This paper will summarize the research progress from history to up-to-date developments. The survey will be updated periodically.
Recent work on mini-batch consistency (MBC) for set functions has brought attention to the need for sequentially processing and aggregating chunks of a partitioned set while guaranteeing the same output for all partitions. However, existing constraints on MBC architectures lead to models with limited expressive power. Additionally, prior work has not addressed how to deal with large sets during training when the full set gradient is required. To address these issues, we propose a Universally MBC (UMBC) class of set functions which can be used in conjunction with arbitrary non-MBC components while still satisfying MBC, enabling a wider range of function classes to be used in MBC settings. Furthermore, we propose an efficient MBC training algorithm which gives an unbiased approximation of the full set gradient and has a constant memory overhead for any set size for both train- and test-time. We conduct extensive experiments including image completion, text classification, unsupervised clustering, and cancer detection on high-resolution images to verify the efficiency and efficacy of our scalable set encoding framework.
Learned inverse problem solvers exhibit remarkable performance in applications like image reconstruction tasks. These data-driven reconstruction methods often follow a two-step scheme. First, one trains the often neural network-based reconstruction scheme via a dataset. Second, one applies the scheme to new measurements to obtain reconstructions. We follow these steps but parameterize the reconstruction scheme with invertible residual networks (iResNets). We demonstrate that the invertibility enables investigating the influence of the training and architecture choices on the resulting reconstruction scheme. For example, assuming local approximation properties of the network, we show that these schemes become convergent regularizations. In addition, the investigations reveal a formal link to the linear regularization theory of linear inverse problems and provide a nonlinear spectral regularization for particular architecture classes. On the numerical side, we investigate the local approximation property of selected trained architectures and present a series of experiments on the MNIST dataset that underpin and extend our theoretical findings.
This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.