亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a non-intrusive Deep Learning-based Reduced Order Model (DL-ROM) capable of capturing the complex dynamics of mechanical systems showing inertia and geometric nonlinearities. In the first phase, a limited number of high fidelity snapshots are used to generate a POD-Galerkin ROM which is subsequently exploited to generate the data, covering the whole parameter range, used in the training phase of the DL-ROM. A convolutional autoencoder is employed to map the system response onto a low-dimensional representation and, in parallel, to model the reduced nonlinear trial manifold. The system dynamics on the manifold is described by means of a deep feedforward neural network that is trained together with the autoencoder. The strategy is benchmarked against high fidelity solutions on a clamped-clamped beam and on a real micromirror with softening response and multiplicity of solutions. By comparing the different computational costs, we discuss the impressive gain in performance and show that the DL-ROM truly represents a real-time tool which can be profitably and efficiently employed in complex system-level simulation procedures for design and optimisation purposes.

相關內容

Performance of model-based feedforward controllers is typically limited by the accuracy of the inverse system dynamics model. Physics-guided neural networks (PGNN), where a known physical model cooperates in parallel with a neural network, were recently proposed as a method to achieve high accuracy of the identified inverse dynamics. However, the flexible nature of neural networks can create overparameterization when employed in parallel with a physical model, which results in a parameter drift during training. This drift may result in parameters of the physical model not corresponding to their physical values, which increases vulnerability of the PGNN to operating conditions not present in the training data. To address this problem, this paper proposes a regularization method via identified physical parameters, in combination with an optimized training initialization that improves training convergence. The regularized PGNN framework is validated on a real-life industrial linear motor, where it delivers better tracking accuracy and extrapolation.

We introduce a numerical technique for controlling the location and stability properties of Hopf bifurcations in dynamical systems. The algorithm consists of solving an optimization problem constrained by an extended system of nonlinear partial differential equations that characterizes Hopf bifurcation points. The flexibility and robustness of the method allows us to advance or delay a Hopf bifurcation to a target value of the bifurcation parameter, as well as controlling the oscillation frequency with respect to a parameter of the system or the shape of the domain on which solutions are defined. Numerical applications are presented in systems arising from biology and fluid dynamics, such as the FitzHugh-Nagumo model, Ginzburg-Landau equation, Rayleigh-B\'enard convection problem, and Navier-Stokes equations, where the control of the location and oscillation frequency of periodic solutions is of high interest.

Conventionally, an integral imaging light field display's elemental image array (EIA) is computationally generated by setting a virtual camera array. The method's high computation complexity hinders real-time rendering. Previous studies utilized high-performance parallel computing to accelerate, which, however, brought about high power consumption and cost concerning portable VR, AR, and MR devices. Some studies used a sparse camera array for fewer computations, but the generation accuracy had to be sacrificed. In this Letter, we propose a new rendering method reducing the computational complexity hundreds of times. We demonstrate that every voxel is invariably reconstructed by several homogeneous pixels on the image source. The invariable voxel-pixel mapping is pre-stored as a lookup table (LUT). Once a target 3D scene is inputted, it is resampled to a voxel array. Next, the voxel array is fast mapped to an EIA through the LUT. If a typical rectangular EIA is used, the mapping can be implemented in columns and rows, further reducing computations and the LUT size. The proposed method requires no advanced computing hardware and is independent of the model used for raytracing. Experimental verification.

Suppressing vibrations in mechanical systems, usually described by second-order dynamical models, is a challenging task in mechanical engineering in terms of computational resources even nowadays. One remedy is structure-preserving model order reduction to construct easy-to-evaluate surrogates for the original dynamical system having the same structure. In our work, we present an overview of recently developed structure-preserving model reduction methods for second-order systems. These methods are based on modal and balanced truncation in different variants, as well as on rational interpolation. Numerical examples are used to illustrate the effectiveness of all described methods.

A robotic swarm may encounter traffic congestion when many robots simultaneously attempt to reach the same area. For solving that efficiently, robots must execute decentralised traffic control algorithms. In this work, we propose a measure for evaluating the access efficiency of a common target area as the number of robots in the swarm rises: the common target area throughput. We demonstrate that the throughput of a target region with a limited area as the time tends to infinity -- the asymptotic throughput -- is finite, opposed to the relation arrival time at target per number of robots that tends to infinity. Using this measure, we can analytically compare the effectiveness of different algorithms. In particular, we propose and formally evaluate three different theoretical strategies for getting to a circular target area: (i) forming parallel queues towards the target area, (ii) forming a hexagonal packing through a corridor going to the target, and (iii) making multiple curved trajectories towards the boundary of the target area. We calculate the throughput for a fixed time and the asymptotic throughput for these strategies. Additionally, we corroborate these results by simulations, showing that when an algorithm has higher throughput, its arrival time per number of robots is lower. Thus, we conclude that using throughput is well suited for comparing congestion algorithms for a common target area in robotic swarms even if we do not have their closed asymptotic equation.

Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption. Unfortunately, there is an accuracy drop when replacing all convolution filters by adder filters. The main reason here is the optimization difficulty of ANNs using $\ell_1$-norm, in which the estimation of gradient in back propagation is inaccurate. In this paper, we present a novel method for further improving the performance of ANNs without increasing the trainable parameters via a progressive kernel based knowledge distillation (PKKD) method. A convolutional neural network (CNN) with the same architecture is simultaneously initialized and trained as a teacher network, features and weights of ANN and CNN will be transformed to a new space to eliminate the accuracy drop. The similarity is conducted in a higher-dimensional space to disentangle the difference of their distributions using a kernel based method. Finally, the desired ANN is learned based on the information from both the ground-truth and teacher, progressively. The effectiveness of the proposed method for learning ANN with higher performance is then well-verified on several benchmarks. For instance, the ANN-50 trained using the proposed PKKD method obtains a 76.8\% top-1 accuracy on ImageNet dataset, which is 0.6\% higher than that of the ResNet-50.

Clustering is a fundamental task in data analysis. Recently, deep clustering, which derives inspiration primarily from deep learning approaches, achieves state-of-the-art performance and has attracted considerable attention. Current deep clustering methods usually boost the clustering results by means of the powerful representation ability of deep learning, e.g., autoencoder, suggesting that learning an effective representation for clustering is a crucial requirement. The strength of deep clustering methods is to extract the useful representations from the data itself, rather than the structure of data, which receives scarce attention in representation learning. Motivated by the great success of Graph Convolutional Network (GCN) in encoding the graph structure, we propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering. Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer, and a dual self-supervised mechanism to unify these two different deep neural architectures and guide the update of the whole model. In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder. Furthermore, we theoretically analyze the delivery operator, i.e., with the delivery operator, GCN improves the autoencoder-specific representation as a high-order graph regularization constraint and autoencoder helps alleviate the over-smoothing problem in GCN. Through comprehensive experiments, we demonstrate that our propose model can consistently perform better over the state-of-the-art techniques.

For neural networks (NNs) with rectified linear unit (ReLU) or binary activation functions, we show that their training can be accomplished in a reduced parameter space. Specifically, the weights in each neuron can be trained on the unit sphere, as opposed to the entire space, and the threshold can be trained in a bounded interval, as opposed to the real line. We show that the NNs in the reduced parameter space are mathematically equivalent to the standard NNs with parameters in the whole space. The reduced parameter space shall facilitate the optimization procedure for the network training, as the search space becomes (much) smaller. We demonstrate the improved training performance using numerical examples.

Compared with visible object tracking, thermal infrared (TIR) object tracking can track an arbitrary target in total darkness since it cannot be influenced by illumination variations. However, there are many unwanted attributes that constrain the potentials of TIR tracking, such as the absence of visual color patterns and low resolutions. Recently, structured output support vector machine (SOSVM) and discriminative correlation filter (DCF) have been successfully applied to visible object tracking, respectively. Motivated by these, in this paper, we propose a large margin structured convolution operator (LMSCO) to achieve efficient TIR object tracking. To improve the tracking performance, we employ the spatial regularization and implicit interpolation to obtain continuous deep feature maps, including deep appearance features and deep motion features, of the TIR targets. Finally, a collaborative optimization strategy is exploited to significantly update the operators. Our approach not only inherits the advantage of the strong discriminative capability of SOSVM but also achieves accurate and robust tracking with higher-dimensional features and more dense samples. To the best of our knowledge, we are the first to incorporate the advantages of DCF and SOSVM for TIR object tracking. Comprehensive evaluations on two thermal infrared tracking benchmarks, i.e. VOT-TIR2015 and VOT-TIR2016, clearly demonstrate that our LMSCO tracker achieves impressive results and outperforms most state-of-the-art trackers in terms of accuracy and robustness with sufficient frame rate.

This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.

北京阿比特科技有限公司