亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the dynamics of (synchronous) one-dimensional cellular automata with cyclical boundary conditions that evolve according to the majority rule with radius $ r $. We introduce a notion that we term cell stability with which we express the structure of the possible configurations that could emerge in this setting. Our main finding is that apart from the configurations of the form $ (0^{r+1}0^* + 1^{r+1}1^*)^* $, which are always fixed-points, the other configurations that the automata could possibly converge to, which are known to be either fixed-points or 2-cycles, have a particular spatially periodic structure. Namely, each of these configurations is of the form $ s^* $ where $ s $ consists of $ O(r^2) $ consecutive sequences of cells with the same state, each such sequence is of length at most $ r $, and the total length of $ s $ is $ O(r^2) $ as well. We show that an analogous result also holds for the minority rule.

相關內容

Our theoretical understanding of deep learning has not kept pace with its empirical success. While network architecture is known to be critical, we do not yet understand its effect on learned representations and network behavior, or how this architecture should reflect task structure.In this work, we begin to address this gap by introducing the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics within an architecture. Crucially, because of the gating, these networks can compute nonlinear functions of their input. We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning. Our analysis demonstrates that the learning dynamics in structured networks can be conceptualized as a neural race with an implicit bias towards shared representations, which then govern the model's ability to systematically generalize, multi-task, and transfer. We validate our key insights on naturalistic datasets and with relaxed assumptions. Taken together, our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures and the role of modularity and compositionality in solving real-world problems. The code and results are available at //www.saxelab.org/gated-dln .

We establish the minimax risk for parameter estimation in sparse high-dimensional Gaussian mixture models and show that a constrained maximum likelihood estimator (MLE) achieves the minimax optimality. However, the optimization-based constrained MLE is computationally intractable due to non-convexity of the problem. Therefore, we propose a Bayesian approach to estimate high-dimensional Gaussian mixtures whose cluster centers exhibit sparsity using a continuous spike-and-slab prior, and prove that the posterior contraction rate of the proposed Bayesian method is minimax optimal. The mis-clustering rate is obtained as a by-product using tools from matrix perturbation theory. Computationally, posterior inference of the proposed Bayesian method can be implemented via an efficient Gibbs sampler with data augmentation, circumventing the challenging frequentist nonconvex optimization-based algorithms. The proposed Bayesian sparse Gaussian mixture model does not require pre-specifying the number of clusters, which is allowed to grow with the sample size and can be adaptively estimated via posterior inference. The validity and usefulness of the proposed method is demonstrated through simulation studies and the analysis of a real-world single-cell RNA sequencing dataset.

Heterogeneity is a dominant factor in the behaviour of many biological processes. Despite this, it is common for mathematical and statistical analyses to ignore biological heterogeneity as a source of variability in experimental data. Therefore, methods for exploring the identifiability of models that explicitly incorporate heterogeneity through variability in model parameters are relatively underdeveloped. We develop a new likelihood-based framework, based on moment matching, for inference and identifiability analysis of differential equation models that capture biological heterogeneity through parameters that vary according to probability distributions. As our novel method is based on an approximate likelihood function, it is highly flexible; we demonstrate identifiability analysis using both a frequentist approach based on profile likelihood, and a Bayesian approach based on Markov-chain Monte Carlo. Through three case studies, we demonstrate our method by providing a didactic guide to inference and identifiability analysis of hyperparameters that relate to the statistical moments of model parameters from independent observed data. Our approach has a computational cost comparable to analysis of models that neglect heterogeneity, a significant improvement over many existing alternatives. We demonstrate how analysis of random parameter models can aid better understanding of the sources of heterogeneity from biological data.

Although much progress has been made in 3D clothed human reconstruction, most of the existing methods fail to produce robust results from in-the-wild images, which contain diverse human poses and appearances. This is mainly due to the large domain gap between training datasets and in-the-wild datasets. The training datasets are usually synthetic ones, which contain rendered images from GT 3D scans. However, such datasets contain simple human poses and less natural image appearances compared to those of real in-the-wild datasets, which makes generalization of it to in-the-wild images extremely challenging. To resolve this issue, in this work, we propose ClothWild, a 3D clothed human reconstruction framework that firstly addresses the robustness on in-thewild images. First, for the robustness to the domain gap, we propose a weakly supervised pipeline that is trainable with 2D supervision targets of in-the-wild datasets. Second, we design a DensePose-based loss function to reduce ambiguities of the weak supervision. Extensive empirical tests on several public in-the-wild datasets demonstrate that our proposed ClothWild produces much more accurate and robust results than the state-of-the-art methods. The codes are available in here: //github.com/hygenie1228/ClothWild_RELEASE.

The Regularised Inertial Dean-Kawasaki model (RIDK) is a nonlinear stochastic PDE which captures fluctuations around the mean-field limit for large-scale particle systems in both density and momentum. We focus on the following two aspects. Firstly, we set up a discontinuous Galerkin (DG) discretisation scheme for the RIDK model: we provide suitable definitions of numerical fluxes at the interface of the mesh elements which are consistent with the wave-type nature of the RIDK model and grant stability of the simulations, and we quantify the rate of convergence in mean square to the continuous RIDK model. Secondly, we introduce modifications of the RIDK model in order to preserve positivity of the density (such a feature does not hold for the original RIDK model). By means of numerical simulations, we show that the modifications lead to physically realistic and positive density profiles. In one case, subject to additional regularity constraints, we also prove positivity. Finally, we present an application of our methodology to a system of diffusing and reacting particles. Our Python code is available in open-source format.

In repeated Measure Designs with multiple groups, the primary purpose is to compare different groups in various aspects. For several reasons, the number of measurements and therefore the dimension of the observation vectors can depend on the group, making the usage of existing approaches impossible. We develop an approach which can be used not only for a possibly increasing number of groups $a$, but also for group-depending dimension $d_i$, which is allowed to go to infinity. This is a unique high-dimensional asymptotic framework impressing through its variety and do without usual conditions on the relation between sample size and dimension. It especially includes settings with fixed dimensions in some groups and increasing dimensions in other ones, which can be seen as semi-high-dimensional. To find a appropriate statistic test new and innovative estimators are developed, which can be used under these diverse settings on $a,d_i$ and $n_i$ without any adjustments. We investigated the asymptotic distribution of a quadratic-form-based test statistic and developed an asymptotic correct test. Finally, an extensive simulation study is conducted to investigate the role of the single group's dimension.

Structure learning via MCMC sampling is known to be very challenging because of the enormous search space and the existence of Markov equivalent DAGs. Theoretical results on the mixing behavior are lacking. In this work, we prove the rapid mixing of a random walk Metropolis-Hastings algorithm, which reveals that the complexity of Bayesian learning of sparse equivalence classes grows only polynomially in $n$ and $p$, under some high-dimensional assumptions. A series of high-dimensional consistency results is obtained, including the strong selection consistency of an empirical Bayes model for structure learning. Our proof is based on two new results. First, we derive a general mixing time bound on finite state spaces, which can be applied to various local MCMC schemes for other model selection problems. Second, we construct greedy search paths on the space of equivalence classes with node degree constraints by proving a combinatorial property of the comparison between two DAGs. Simulation studies on the proposed MCMC sampler are conducted to illustrate the main theoretical findings.

In recent years, change point detection for high dimensional data has become increasingly important in many scientific fields. Most literature develop a variety of separate methods designed for specified models (e.g. mean shift model, vector auto-regressive model, graphical model). In this paper, we provide a unified framework for structural break detection which is suitable for a large class of models. Moreover, the proposed algorithm automatically achieves consistent parameter estimates during the change point detection process, without the need for refitting the model. Specifically, we introduce a three-step procedure. The first step utilizes the block segmentation strategy combined with a fused lasso based estimation criterion, leads to significant computational gains without compromising the statistical accuracy in identifying the number and location of the structural breaks. This procedure is further coupled with hard-thresholding and exhaustive search steps to consistently estimate the number and location of the break points. The strong guarantees are proved on both the number of estimated change points and the rates of convergence of their locations. The consistent estimates of model parameters are also provided. The numerical studies provide further support of the theory and validate its competitive performance for a wide range of models. The developed algorithm is implemented in the R package LinearDetect.

Since the seminal result of Karger, Motwani, and Sudan, algorithms for approximate 3-coloring have primarily centered around SDP-based rounding. However, it is likely that important combinatorial or algebraic insights are needed in order to break the $n^{o(1)}$ threshold. One way to develop new understanding in graph coloring is to study special subclasses of graphs. For instance, Blum studied the 3-coloring of random graphs, and Arora and Ge studied the 3-coloring of graphs with low threshold-rank. In this work, we study graphs which arise from a tensor product, which appear to be novel instances of the 3-coloring problem. We consider graphs of the form $H = (V,E)$ with $V =V( K_3 \times G)$ and $E = E(K_3 \times G) \setminus E'$, where $E' \subseteq E(K_3 \times G)$ is any edge set such that no vertex has more than an $\epsilon$ fraction of its edges in $E'$. We show that one can construct $\widetilde{H} = K_3 \times \widetilde{G}$ with $V(\widetilde{H}) = V(H)$ that is close to $H$. For arbitrary $G$, $\widetilde{H}$ satisfies $|E(H) \Delta E(\widetilde{H})| \leq O(\epsilon|E(H)|)$. Additionally when $G$ is a mild expander, we provide a 3-coloring for $H$ in polynomial time. These results partially generalize an exact tensor factorization algorithm of Imrich. On the other hand, without any assumptions on $G$, we show that it is NP-hard to 3-color $H$.

In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.

北京阿比特科技有限公司