Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established. Therefore, understanding how LLMs reason and make decisions is crucial for their safe deployment. This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt. Leveraging the insight that LLMs learn to infer latent concepts during pretraining, we propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty. We show that the uncertainty decreases as the prompt's informativeness increases, similar to epistemic uncertainty. Our detailed experimental results on real datasets validate our proposed model.
Multi-step reasoning instruction, such as chain-of-thought prompting, is widely adopted to explore better language models (LMs) performance. We report on the systematic strategy that LMs employ in such a multi-step reasoning process. Our controlled experiments reveal that LMs rely more heavily on heuristics, such as lexical overlap, in the earlier stages of reasoning, where more reasoning steps remain to reach a goal. Conversely, their reliance on heuristics decreases as LMs progress closer to the final answer through multiple reasoning steps. This suggests that LMs can backtrack only a limited number of future steps and dynamically combine heuristic strategies with rationale ones in tasks involving multi-step reasoning.
Language models will inevitably err in situations with which they are unfamiliar. However, by effectively communicating uncertainties, they can still guide humans toward making sound decisions in those contexts. We demonstrate this idea by developing HEAR, a system that can successfully guide humans in simulated residential environments despite generating potentially inaccurate instructions. Diverging from systems that provide users with only the instructions they generate, HEAR warns users of potential errors in its instructions and suggests corrections. This rich uncertainty information effectively prevents misguidance and reduces the search space for users. Evaluation with 80 users shows that HEAR achieves a 13% increase in success rate and a 29% reduction in final location error distance compared to only presenting instructions to users. Interestingly, we find that offering users possibilities to explore, HEAR motivates them to make more attempts at the task, ultimately leading to a higher success rate. To our best knowledge, this work is the first to show the practical benefits of uncertainty communication in a long-horizon sequential decision-making problem.
Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases, and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed via narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an AI system promotes equitable health outcomes, we hope that it can be leveraged and built upon towards a shared goal of LLMs that promote accessible and equitable healthcare.
Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy.
Large language models (LLMs) often generate inaccurate or fabricated information and generally fail to indicate their confidence, which limits their broader applications. Previous work elicits confidence from LLMs by direct or self-consistency prompting, or constructing specific datasets for supervised finetuning. The prompting-based approaches have inferior performance, and the training-based approaches are limited to binary or inaccurate group-level confidence estimates. In this work, we present the advanced SaySelf, a training framework that teaches LLMs to express more accurate fine-grained confidence estimates. In addition, beyond the confidence scores, SaySelf initiates the process of directing LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge and explain their uncertainty. This is achieved by using an LLM to automatically summarize the uncertainties in specific knowledge via natural language. The summarization is based on the analysis of the inconsistency in multiple sampled reasoning chains, and the resulting data is utilized for supervised fine-tuning. Moreover, we utilize reinforcement learning with a meticulously crafted reward function to calibrate the confidence estimates, motivating LLMs to deliver accurate, high-confidence predictions and to penalize overconfidence in erroneous outputs. Experimental results in both in-distribution and out-of-distribution datasets demonstrate the effectiveness of SaySelf in reducing the confidence calibration error and maintaining the task performance. We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration. The code is made public at //github.com/xu1868/SaySelf.
Large language models (LLMs) have started to play a vital role in modelling speech and text. To explore the best use of context and multiple systems' outputs for post-ASR speech emotion prediction, we study LLM prompting on a recent task named GenSEC. Our techniques include ASR transcript ranking, variable conversation context, and system output fusion. We show that the conversation context has diminishing returns and the metric used to select the transcript for prediction is crucial. Finally, our best submission surpasses the provided baseline by 20% in absolute accuracy.
Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. Both cognitive neuroscience and reinforcement learning (RL) have proposed a number of interacting functional components that together implement search and evaluation in multi-step decision making. These components include conflict monitoring, state prediction, state evaluation, task decomposition, and orchestration. To improve planning with LLMs, we propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of the specialized modules mentioned above, each implemented using an LLM. MAP improves planning through the interaction of specialized modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate MAP on three challenging planning tasks -- graph traversal, Tower of Hanoi, and the PlanBench benchmark -- as well as an NLP task requiring multi-step reasoning (strategyQA). We find that MAP yields significant improvements over both standard LLM methods (zero-shot prompting, in-context learning) and competitive baselines (chain-of-thought, multi-agent debate, and tree-of-thought), can be effectively combined with smaller and more cost-efficient LLMs (Llama3-70B), and displays superior transfer across tasks. These results suggest the benefit of a modular and multi-agent approach to planning with LLMs.
Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.