This paper aims to develop a new attribution method to explain the conflict between individual variables' attributions and their coalition's attribution from a fully new perspective. First, we find that the Shapley value can be reformulated as the allocation of Harsanyi interactions encoded by the AI model. Second, based the re-alloction of interactions, we extend the Shapley value to the attribution of coalitions. Third we ective. We derive the fundamental mechanism behind the conflict. This conflict come from the interaction containing partial variables in their coalition.
We develop an analytical framework to characterize the set of optimal ReLU neural networks by reformulating the non-convex training problem as a convex program. We show that the global optima of the convex parameterization are given by a polyhedral set and then extend this characterization to the optimal set of the non-convex training objective. Since all stationary points of the ReLU training problem can be represented as optima of sub-sampled convex programs, our work provides a general expression for all critical points of the non-convex objective. We then leverage our results to provide an optimal pruning algorithm for computing minimal networks, establish conditions for the regularization path of ReLU networks to be continuous, and develop sensitivity results for minimal ReLU networks.
This paper proposes a novel perspective on learning, positing it as the pursuit of dynamical invariants -- data combinations that remain constant or exhibit minimal change over time as a system evolves. This concept is underpinned by both informational and physical principles, rooted in the inherent properties of these invariants. Firstly, their stability makes them ideal for memorization and integration into associative networks, forming the basis of our knowledge structures. Secondly, the predictability of these stable invariants makes them valuable sources of usable energy, quantifiable as kTln2 per bit of accurately predicted information. This energy can be harnessed to explore new transformations, rendering learning systems energetically autonomous and increasingly effective. Such systems are driven to continuously seek new data invariants as energy sources. The paper further explores several meta-architectures of autonomous, self-propelled learning agents that utilize predictable information patterns as a source of usable energy.
Lack of factual correctness is an issue that still plagues state-of-the-art summarization systems despite their impressive progress on generating seemingly fluent summaries. In this paper, we show that factual inconsistency can be caused by irrelevant parts of the input text, which act as confounders. To that end, we leverage information-theoretic measures of causal effects to quantify the amount of confounding and precisely quantify how they affect the summarization performance. Based on insights derived from our theoretical results, we design a simple multi-task model to control such confounding by leveraging human-annotated relevant sentences when available. Crucially, we give a principled characterization of data distributions where such confounding can be large thereby necessitating the use of human annotated relevant sentences to generate factual summaries. Our approach improves faithfulness scores by 20\% over strong baselines on AnswerSumm \citep{fabbri2021answersumm}, a conversation summarization dataset where lack of faithfulness is a significant issue due to the subjective nature of the task. Our best method achieves the highest faithfulness score while also achieving state-of-the-art results on standard metrics like ROUGE and METEOR. We corroborate these improvements through human evaluation.
This chapter is a preprint from our book by , focusing on leveraging machine learning (ML) in chemical and polyolefin manufacturing optimization. It's crafted for both novices and seasoned professionals keen on the latest ML applications in chemical processes. We trace the evolution of AI and ML in chemical industries, delineate core ML components, and provide resources for ML beginners. A detailed discussion on various ML methods is presented, covering regression, classification, and unsupervised learning techniques, with performance metrics and examples. Ensemble methods, deep learning networks, including MLP, DNNs, RNNs, CNNs, and transformers, are explored for their growing role in chemical applications. Practical workshops guide readers through predictive modeling using advanced ML algorithms. The chapter culminates with insights into science-guided ML, advocating for a hybrid approach that enhances model accuracy. The extensive bibliography offers resources for further research and practical implementation. This chapter aims to be a thorough primer on ML's practical application in chemical engineering, particularly for polyolefin production, and sets the stage for continued learning in subsequent chapters. Please cite the original work [169,170] when referencing.
We present a deterministic fully dynamic algorithm with subpolynomial worst-case time per graph update such that after processing each update of the graph, the algorithm outputs a minimum cut of the graph if the graph has a cut of size at most $c$ for some $c = (\log n)^{o(1)}$. Previously, the best update time was $\widetilde O(\sqrt{n})$ for any $c > 2$ and $c = O(\log n)$ [Thorup, Combinatorica'07].
This paper considers the problem of community detection on multiple potentially correlated graphs from an information-theoretical perspective. We first put forth a random graph model, called the multi-view stochastic block model (MVSBM), designed to generate correlated graphs on the same set of nodes (with cardinality $n$). The $n$ nodes are partitioned into two disjoint communities of equal size. The presence or absence of edges in the graphs for each pair of nodes depends on whether the two nodes belong to the same community or not. The objective for the learner is to recover the hidden communities with observed graphs. Our technical contributions are two-fold: (i) We establish an information-theoretic upper bound (Theorem~1) showing that exact recovery of community is achievable when the model parameters of MVSBM exceed a certain threshold. (ii) Conversely, we derive an information-theoretic lower bound (Theorem~2) showing that when the model parameters of MVSBM fall below the aforementioned threshold, then for any estimator, the expected number of misclassified nodes will always be greater than one. Our results for the MVSBM recover several prior results for community detection in the standard SBM as well as in multiple independent SBMs as special cases.
We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.
We propose a novel, heterogeneous multi-agent architecture that miniaturizes rovers by outsourcing power generation to a central hub. By delegating power generation and distribution functions to this hub, the size, weight, power, and cost (SWAP-C) per rover are reduced, enabling efficient fleet scaling. As these rovers conduct mission tasks around the terrain, the hub charges an array of replacement battery modules. When a rover requires charging, it returns to the hub to initiate an autonomous docking sequence and exits with a fully charged battery. This confers an advantage over direct charging methods, such as wireless or wired charging, by replenishing a rover in minutes as opposed to hours, increasing net rover uptime. This work shares an open-source platform developed to demonstrate battery swapping on unknown field terrain. We detail our design methodologies utilized for increasing system reliability, with a focus on optimization, robust mechanical design, and verification. Optimization of the system is discussed, including the design of passive guide rails through simulation-based optimization methods which increase the valid docking configuration space by 258%. The full system was evaluated during integrated testing, where an average servicing time of 98 seconds was achieved on surfaces with a gradient up to 10{\deg}. We conclude by briefly proposing flight considerations for advancing the system toward a space-ready design. In sum, this prototype represents a proof of concept for autonomous docking and battery transfer on field terrain, advancing its Technology Readiness Level (TRL) from 1 to 3.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.