亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The financial sector's adoption of technology-driven data analysis has enhanced operational efficiency and revenue generation by leveraging personal sensitive data. However, the inherent characteristics of blockchain hinder decentralized finance (DeFi) from accessing necessary sensitive user data. To address this challenge, we introduce a protocol that both safeguards user privacy and ensures data availability through the incorporation of homomorphic encryption and zero-knowledge-proof techniques in blockchain technology. This novel protocol helps mitigate privacy risks caused by sensitive data leaks while improving the capital efficiency of the DeFi market. Furthermore, we explore the applicability of these privacy-preserving methods in on-chain ecosystems and cross-border financial applications. Our solution contributes to secure, user-centric solutions for DeFi while upholding principles of decentralization and privacy protection.

相關內容

 區塊鏈(Blockchain)是由節點參與的分布式數據庫系統,它的特點是不可更改,不可偽造,也可以將其理解為賬簿系統(ledger)。它是比特幣的一個重要概念,完整比特幣區塊鏈的副本,記錄了其代幣(token)的每一筆交易。通過這些信息,我們可以找到每一個地址,在歷史上任何一點所擁有的價值。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Teleoperation of mobile manipulators within a home environment can significantly enhance the independence of individuals with severe motor impairments, allowing them to regain the ability to perform self-care and household tasks. There is a critical need for novel teleoperation interfaces to offer effective alternatives for individuals with impairments who may encounter challenges in using existing interfaces due to physical limitations. In this work, we iterate on one such interface, HAT (Head-Worn Assistive Teleoperation), an inertial-based wearable integrated into any head-worn garment. We evaluate HAT through a 7-day in-home study with Henry Evans, a non-speaking individual with quadriplegia who has participated extensively in assistive robotics studies. We additionally evaluate HAT with a proposed shared control method for mobile manipulators termed Driver Assistance and demonstrate how the interface generalizes to other physical devices and contexts. Our results show that HAT is a strong teleoperation interface across key metrics including efficiency, errors, learning curve, and workload. Code and videos are located on our project website.

This paper investigates the relationship between scientific innovation in biomedical sciences and its impact on industrial activities, focusing on how the historical impact and content of scientific papers influenced future funding and innovation grant application content for small businesses. The research incorporates bibliometric analyses along with SBIR (Small Business Innovation Research) data to yield a holistic view of the science-industry interface. By evaluating the influence of scientific innovation on industry across 10,873 biomedical topics and taking into account their taxonomic relationships, we present an in-depth exploration of science-industry interactions where we quantify the temporal effects and impact latency of scientific advancements on industrial activities, spanning from 2010 to 2021. Our findings indicate that scientific progress substantially influenced industrial innovation funding and the direction of industrial innovation activities. Approximately 76% and 73% of topics showed a correlation and Granger-causality between scientific interest in papers and future funding allocations to relevant small businesses. Moreover, around 74% of topics demonstrated an association between the semantic content of scientific abstracts and future grant applications. Overall, the work contributes to a more nuanced and comprehensive understanding of the science-industry interface, opening avenues for more strategic resource allocation and policy developments aimed at fostering innovation.

In the absence of data protection measures, software applications lead to privacy breaches, posing threats to end-users and software organisations. Privacy Enhancing Technologies (PETs) are technical measures that protect personal data, thus minimising such privacy breaches. However, for software applications to deliver data protection using PETs, software developers should actively and correctly incorporate PETs into the software they develop. Therefore, to uncover ways to encourage and support developers to embed PETs into software, this Systematic Literature Review (SLR) analyses 39 empirical studies on developers' privacy practices. It reports the usage of six PETs in software application scenarios. Then, it discusses challenges developers face when integrating PETs into software, ranging from intrinsic challenges, such as the unawareness of PETs, to extrinsic challenges, such as the increased development cost. Next, the SLR presents the existing solutions to address these challenges, along with the limitations of the solutions. Further, it outlines future research avenues to better understand PETs from a developer perspective and minimise the challenges developers face when incorporating PETs into software.

With the continuous advancement in autonomous systems, it becomes crucial to provide robust safety guarantees for safety-critical systems. Hamilton-Jacobi Reachability Analysis is a formal verification method that guarantees performance and safety for dynamical systems and is widely applicable to various tasks and challenges. Traditionally, reachability problems are solved by using grid-based methods, whose computational and memory cost scales exponentially with the dimensionality of the system. To overcome this challenge, DeepReach, a deep learning-based approach that approximately solves high-dimensional reachability problems, is proposed and has shown lots of promise. In this paper, we aim to improve the performance of DeepReach on high-dimensional systems by exploring different choices of activation functions. We first run experiments on a 3D system as a proof of concept. Then we demonstrate the effectiveness of our approach on a 9D multi-vehicle collision problem.

Automatic program repair (APR) techniques have the potential to reduce manual efforts in uncovering and repairing program defects during the code review (CR) process. However, the limited accuracy and considerable time costs associated with existing APR approaches hinder their adoption in industrial practice. One key factor is the under-utilization of review comments, which provide valuable insights into defects and potential fixes. Recent advancements in Large Language Models (LLMs) have enhanced their ability to comprehend natural and programming languages, enabling them to generate patches based on review comments. This paper conducts a comprehensive investigation into the effective utilization of LLMs for repairing CR defects. In this study, various prompts are designed and compared across mainstream LLMs using two distinct datasets from human reviewers and automated checkers. Experimental results demonstrate a remarkable repair rate of 72.97% with the best prompt, highlighting a substantial improvement in the effectiveness and practicality of automatic repair techniques.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司