亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When we rely on deep-learned models for robotic perception, we must recognize that these models may behave unreliably on inputs dissimilar from the training data, compromising the closed-loop system's safety. This raises fundamental questions on how we can assess confidence in perception systems and to what extent we can take safety-preserving actions when external environmental changes degrade our perception model's performance. Therefore, we present a framework to certify the safety of a perception-enabled system deployed in novel contexts. To do so, we leverage robust model predictive control (MPC) to control the system using the perception estimates while maintaining the feasibility of a safety-preserving fallback plan that does not rely on the perception system. In addition, we calibrate a runtime monitor using recently proposed conformal prediction techniques to certifiably detect when the perception system degrades beyond the tolerance of the MPC controller, resulting in an end-to-end safety assurance. We show that this control framework and calibration technique allows us to certify the system's safety with orders of magnitudes fewer samples than required to retrain the perception network when we deploy in a novel context on a photo-realistic aircraft taxiing simulator. Furthermore, we illustrate the safety-preserving behavior of the MPC on simulated examples of a quadrotor. We open-source our simulation platform and provide videos of our results at our project page: \url{//tinyurl.com/fallback-safe-mpc}.

相關內容

Cyclic codes are an interesting family of linear codes since they have efficient decoding algorithms and contain optimal codes as subfamilies. Constructing infinite families of cyclic codes with good parameters is important in both theory and practice. Recently, Tang and Ding [IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 7842--7849, 2022] proposed an infinite family of binary cyclic codes with good parameters. Shi et al. [arXiv:2309.12003v1, 2023] developed the binary Tang-Ding codes to the $4$-ary case. Inspired by these two works, we study $2^s$-ary Tang-Ding codes, where $s\geq 2$. Good lower bounds on the minimum distance of the $2^s$-ary Tang-Ding codes are presented. As a by-product, an infinite family of $2^s$-ary duadic codes with a square-root like lower bound is presented.

In this short paper, we prove that the Bochner integral form of the operator-valued Riccati equation has a unique solution if and only if its mild form has a unique solution. This implies that the mild and Bochner integral forms of this equation are equivalent. The result is obtained through an operator representation argument.

The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the wireless propagation environment. Compared to that, questions related to system-level integration of RISs have received less attention. We address this research gap by analyzing the necessary control/signaling operations that are necessary to integrate RIS as a new type of wireless infrastructure element. We build a general model for evaluating the impact of control operations along two dimensions: i) the allocated bandwidth of the control channels (in-band and out-of-band), and ii) the rate selection for the data channel (multiplexing or diversity). Specifically, the second dimension results in two generic transmission schemes, one based on channel estimation and the subsequent optimization of the RIS, while the other is based on sweeping through predefined RIS phase configurations. We analyze the communication performance in multiple setups built along these two dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in RIS-assisted communication and the associated control operations. The main contribution of the paper is a methodology for systematic evaluation of the control overhead in RIS-aided networks, regardless of the specific control schemes used.

Privacy is a central challenge for systems that learn from sensitive data sets, especially when a system's outputs must be continuously updated to reflect changing data. We consider the achievable error for differentially private continual release of a basic statistic -- the number of distinct items -- in a stream where items may be both inserted and deleted (the turnstile model). With only insertions, existing algorithms have additive error just polylogarithmic in the length of the stream $T$. We uncover a much richer landscape in the turnstile model, even without considering memory restrictions. We show that every differentially private mechanism that handles insertions and deletions has worst-case additive error at least $T^{1/4}$ even under a relatively weak, event-level privacy definition. Then, we identify a parameter of the input stream, its maximum flippancy, that is low for natural data streams and for which we give tight parameterized error guarantees. Specifically, the maximum flippancy is the largest number of times that the contribution of a single item to the distinct elements count changes over the course of the stream. We present an item-level differentially private mechanism that, for all turnstile streams with maximum flippancy $w$, continually outputs the number of distinct elements with an $O(\sqrt{w} \cdot poly\log T)$ additive error, without requiring prior knowledge of $w$. We prove that this is the best achievable error bound that depends only on $w$, for a large range of values of $w$. When $w$ is small, the error of our mechanism is similar to the polylogarithmic in $T$ error in the insertion-only setting, bypassing the hardness in the turnstile model.

Foundation models (FoMos), referring to large-scale AI models, possess human-like capabilities and are able to perform competitively in the domain of human intelligence. The breakthrough in FoMos has inspired researchers to deploy such models in the sixth-generation (6G) mobile networks for automating a broad range of tasks in next-generation mobile applications. While the sizes of FoMos are reaching their peaks, their next phase is expected to focus on fine-tuning the models to specific downstream tasks. This inspires us to propose the vision of FoMo fine-tuning as a 6G service. Its key feature is the exploitation of existing parameter-efficient fine-tuning (PEFT) techniques to tweak only a small fraction of model weights for a FoMo to become customized for a specific task. To materialize the said vision, we survey the state-of-the-art PEFT and then present a novel device-edge fine-tuning (DEFT) framework for providing efficient and privacy-preserving fine-tuning services at the 6G network edge. The framework consists of the following comprehensive set of techniques: 1) Control of fine-tuning parameter sizes in different transformer blocks of a FoMo; 2) Over-the-air computation for realizing neural connections in DEFT; 3) Federated DEFT in a multi-device system by downloading a FoMo emulator or gradients; 4) On-the-fly prompt-ensemble tuning; 5) Device-to-device prompt transfer among devices. Experiments are conducted using pre-trained FoMos with up to 11 billion parameters to demonstrate the effectiveness of DEFT techniques. The article is concluded by presenting future research opportunities.

In this work, our goal is to develop a theoretical framework that can eventually be used for analyzing the effectiveness of visual stories such as feature films to comic books. To develop this theoretical framework, we introduce a new story element called moments. Our conjecture is that any linear story such as the story of a feature film can be decomposed into a set of moments that follow each other. Moments are defined as the perception of the actions, interactions, and expressions of all characters or a single character during a given time period. We categorize the moments into two major types: story moments and discourse moments. Each type of moment can further be classified into three types, which we call universal storytelling moments. We believe these universal moments foster or deteriorate the emotional attachment of the audience to a particular character or the story. We present a methodology to catalog the occurrences of these universal moments as they are found in the story. The cataloged moments can be represented using curves or color strips. Therefore, we can visualize a character's journey through the story as either a 3D curve or a color strip. We also demonstrated that both story and discourse moments can be transformed into one lump-sum attraction parameter. The attraction parameter in time provides a function that can be plotted graphically onto a timeline illustrating changes in the emotional attachment of audience to a character or the story. By inspecting these functions the story analyst can analytically decipher the moments in the story where the attachment is being established, maintained, strengthened, or conversely where it is languishing.

An important prerequisite for autonomous robots is their ability to reliably grasp a wide variety of objects. Most state-of-the-art systems employ specialized or simple end-effectors, such as two-jaw grippers, which severely limit the range of objects to manipulate. Additionally, they conventionally require a structured and fully predictable environment while the vast majority of our world is complex, unstructured, and dynamic. This paper presents an implementation to overcome both issues. Firstly, the integration of a five-finger hand enhances the variety of possible grasps and manipulable objects. This kinematically complex end-effector is controlled by a deep learning based generative grasping network. The required virtual model of the unknown target object is iteratively completed by processing visual sensor data. Secondly, this visual feedback is employed to realize closed-loop servo control which compensates for external disturbances. Our experiments on real hardware confirm the system's capability to reliably grasp unknown dynamic target objects without a priori knowledge of their trajectories. To the best of our knowledge, this is the first method to achieve dynamic multi-fingered grasping for unknown objects. A video of the experiments is available at //youtu.be/Ut28yM1gnvI.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司