亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the optimal decision-making problem in a primary sample of interest with multiple auxiliary sources available. The outcome of interest is limited in the sense that it is only observed in the primary sample. In reality, such multiple data sources may belong to heterogeneous studies and thus cannot be combined directly. This paper proposes a new framework to handle heterogeneous studies and address the limited outcome simultaneously through a novel calibrated optimal decision making (CODA) method, by leveraging the common intermediate outcomes in multiple data sources. Specifically, CODA allows the baseline covariates across different samples to have either homogeneous or heterogeneous distributions. Under a mild and testable assumption that the conditional means of intermediate outcomes in different samples are equal given baseline covariates and the treatment information, we show that the proposed CODA estimator of the conditional mean outcome is asymptotically normal and more efficient than using the primary sample solely. In addition, the variance of the CODA estimator can be easily obtained using the simple plug-in method due to the rate double robustness. Extensive experiments on simulated datasets demonstrate empirical validity and improved efficiency using CODA, followed by a real application to a MIMIC-III dataset as the primary sample with the auxiliary data from eICU.

相關內容

Practitioners in diverse fields such as healthcare, economics and education are eager to apply machine learning to improve decision making. The cost and impracticality of performing experiments and a recent monumental increase in electronic record keeping has brought attention to the problem of evaluating decisions based on non-experimental observational data. This is the setting of this work. In particular, we study estimation of individual-level causal effects, such as a single patient's response to alternative medication, from recorded contexts, decisions and outcomes. We give generalization bounds on the error in estimated effects based on distance measures between groups receiving different treatments, allowing for sample re-weighting. We provide conditions under which our bound is tight and show how it relates to results for unsupervised domain adaptation. Led by our theoretical results, we devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance, and encourage sharing of information between treatment groups. We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances. Finally, an experimental evaluation on real and synthetic data shows the value of our proposed representation architecture and regularization scheme.

Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data-fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly-robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data-fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides versus sulfonylureas - the two most common oral diabetes medication classes for initial treatment - on all-cause mortality described in a historical cohort applied to a contemporary cohort of US Veterans with diabetes.

While a difference-in-differences (DID) design was originally developed with one pre- and one post-treatment period, data from additional pre-treatment periods are often available. How can researchers improve the DID design with such multiple pre-treatment periods under what conditions? We first use potential outcomes to clarify three benefits of multiple pre-treatment periods: (1) assessing the parallel trends assumption, (2) improving estimation accuracy, and (3) allowing for a more flexible parallel trends assumption. We then propose a new estimator, double DID, which combines all the benefits through the generalized method of moments and contains the two-way fixed effects regression as a special case. We show that the double DID requires a weaker assumption about outcome trends and is more efficient than existing DID estimators. We also generalize the double DID to the staggered adoption design where different units can receive the treatment in different time periods. We illustrate the proposed method with two empirical applications, covering both the basic DID and staggered adoption designs. We offer an open-source R package that implements the proposed methodologies.

Partially linear additive models generalize linear ones since they model the relation between a response variable and covariates by assuming that some covariates have a linear relation with the response but each of the others enter through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved in the model. When dealing with additive components, the problem of providing reliable estimators when atypical data arise, is of practical importance motivating the need of robust procedures. Hence, we propose a family of robust estimators for partially linear additive models by combining $B-$splines with robust linear regression estimators. We obtain consistency results, rates of convergence and asymptotic normality for the linear components, under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposal with its classical counterpart under different models and contamination schemes. The numerical experiments show the advantage of the proposed methodology for finite samples. We also illustrate the usefulness of the proposed approach on a real data set.

This paper considers identification and estimation of the causal effect of the time Z until a subject is treated on a survival outcome T. The treatment is not randomly assigned, T is randomly right censored by a random variable C and the time to treatment Z is right censored by min(T,C). The endogeneity issue is treated using an instrumental variable explaining Z and independent of the error term of the model. We study identification in a fully nonparametric framework. We show that our specification generates an integral equation, of which the regression function of interest is a solution. We provide identification conditions that rely on this identification equation. For estimation purposes, we assume that the regression function follows a parametric model. We propose an estimation procedure and give conditions under which the estimator is asymptotically normal. The estimators exhibit good finite sample properties in simulations. Our methodology is applied to find evidence supporting the efficacy of a therapy for burn-out.

Evaluating predictive models is a crucial task in predictive analytics. This process is especially challenging with time series data where the observations show temporal dependencies. Several studies have analysed how different performance estimation methods compare with each other for approximating the true loss incurred by a given forecasting model. However, these studies do not address how the estimators behave for model selection: the ability to select the best solution among a set of alternatives. We address this issue and compare a set of estimation methods for model selection in time series forecasting tasks. We attempt to answer two main questions: (i) how often is the best possible model selected by the estimators; and (ii) what is the performance loss when it does not. We empirically found that the accuracy of the estimators for selecting the best solution is low, and the overall forecasting performance loss associated with the model selection process ranges from 1.2% to 2.3%. We also discovered that some factors, such as the sample size, are important in the relative performance of the estimators.

For randomized controlled trials (RCTs) with a single intervention being measured on multiple outcomes, researchers often apply a multiple testing procedure (such as Bonferroni or Benjamini-Hochberg) to adjust $p$-values. Such an adjustment reduces the likelihood of spurious findings, but also changes the statistical power, sometimes substantially, which reduces the probability of detecting effects when they do exist. However, this consideration is frequently ignored in typical power analyses, as existing tools do not easily accommodate the use of multiple testing procedures. We introduce the PUMP R package as a tool for analysts to estimate statistical power, minimum detectable effect size, and sample size requirements for multi-level RCTs with multiple outcomes. Multiple outcomes are accounted for in two ways. First, power estimates from PUMP properly account for the adjustment in $p$-values from applying a multiple testing procedure. Second, as researchers change their focus from one outcome to multiple outcomes, different definitions of statistical power emerge. PUMP allows researchers to consider a variety of definitions of power, as some may be more appropriate for the goals of their study. The package estimates power for frequentist multi-level mixed effects models, and supports a variety of commonly-used RCT designs and models and multiple testing procedures. In addition to the main functionality of estimating power, minimum detectable effect size, and sample size requirements, the package allows the user to easily explore sensitivity of these quantities to changes in underlying assumptions.

The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no `one-size-fits-all' causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework's novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence's ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.

Recent studies in image retrieval task have shown that ensembling different models and combining multiple global descriptors lead to performance improvement. However, training different models for ensemble is not only difficult but also inefficient with respect to time or memory. In this paper, we propose a novel framework that exploits multiple global descriptors to get an ensemble-like effect while it can be trained in an end-to-end manner. The proposed framework is flexible and expandable by the global descriptor, CNN backbone, loss, and dataset. Moreover, we investigate the effectiveness of combining multiple global descriptors with quantitative and qualitative analysis. Our extensive experiments show that the combined descriptor outperforms a single global descriptor, as it can utilize different types of feature properties. In the benchmark evaluation, the proposed framework achieves the state-of-the-art performance on the CARS196, CUB200-2011, In-shop Clothes and Stanford Online Products on image retrieval tasks by a large margin compared to competing approaches. Our model implementations and pretrained models are publicly available.

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.

北京阿比特科技有限公司