亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Parkinson's disease (PD) is a slowly progressive, debilitating neurodegenerative disease which causes motor symptoms including gait dysfunction. Motor fluctuations are alterations between periods with a positive response to levodopa therapy ("on") and periods marked by re-emergency of PD symptoms ("off") as the response to medication wears off. These fluctuations often affect gait speed and they increase in their disabling impact as PD progresses. To improve the effectiveness of current indoor localisation methods, a transformer-based approach utilising dual modalities which provide complementary views of movement, Received Signal Strength Indicator (RSSI) and accelerometer data from wearable devices, is proposed. A sub-objective aims to evaluate whether indoor localisation, including its in-home gait speed features (i.e. the time taken to walk between rooms), could be used to evaluate motor fluctuations by detecting whether the person with PD is taking levodopa medications or withholding them. To properly evaluate our proposed method, we use a free-living dataset where the movements and mobility are greatly varied and unstructured as expected in real-world conditions. 24 participants lived in pairs (consisting of one person with PD, one control) for five days in a smart home with various sensors. Our evaluation on the resulting dataset demonstrates that our proposed network outperforms other methods for indoor localisation. The sub-objective evaluation shows that precise room-level localisation predictions, transformed into in-home gait speed features, produce accurate predictions on whether the PD participant is taking or withholding their medications.

相關內容

Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.

The widespread use of Large Language Models (LLMs), celebrated for their ability to generate human-like text, has raised concerns about misinformation and ethical implications. Addressing these concerns necessitates the development of robust methods to detect and attribute text generated by LLMs. This paper investigates "Cross-Model Detection," evaluating whether a classifier trained to distinguish between source LLM-generated and human-written text can also detect text from a target LLM without further training. The study comprehensively explores various LLM sizes and families, and assesses the impact of conversational fine-tuning techniques on classifier generalization. The research also delves into Model Attribution, encompassing source model identification, model family classification, and model size classification. Our results reveal several key findings: a clear inverse relationship between classifier effectiveness and model size, with larger LLMs being more challenging to detect, especially when the classifier is trained on data from smaller models. Training on data from similarly sized LLMs can improve detection performance from larger models but may lead to decreased performance when dealing with smaller models. Additionally, model attribution experiments show promising results in identifying source models and model families, highlighting detectable signatures in LLM-generated text. Overall, our study contributes valuable insights into the interplay of model size, family, and training data in LLM detection and attribution.

Neural Networks (NN) provide a solid and reliable way of executing different types of applications, ranging from speech recognition to medical diagnosis, speeding up onerous and long workloads. The challenges involved in their implementation at the edge include providing diversity, flexibility, and sustainability. That implies, for instance, supporting evolving applications and algorithms energy-efficiently. Using hardware or software accelerators can deliver fast and efficient computation of the \acp{nn}, while flexibility can be exploited to support long-term adaptivity. Nonetheless, handcrafting an NN for a specific device, despite the possibility of leading to an optimal solution, takes time and experience, and that's why frameworks for hardware accelerators are being developed. This work-in-progress study focuses on exploring the possibility of combining the toolchain proposed by Ratto et al., which has the distinctive ability to favor adaptivity, with approximate computing. The goal will be to allow lightweight adaptable NN inference on FPGAs at the edge. Before that, the work presents a detailed review of established frameworks that adopt a similar streaming architecture for future comparison.

Collaborative perception, which greatly enhances the sensing capability of connected and autonomous vehicles (CAVs) by incorporating data from external resources, also brings forth potential security risks. CAVs' driving decisions rely on remote untrusted data, making them susceptible to attacks carried out by malicious participants in the collaborative perception system. However, security analysis and countermeasures for such threats are absent. To understand the impact of the vulnerability, we break the ground by proposing various real-time data fabrication attacks in which the attacker delivers crafted malicious data to victims in order to perturb their perception results, leading to hard brakes or increased collision risks. Our attacks demonstrate a high success rate of over 86\% on high-fidelity simulated scenarios and are realizable in real-world experiments. To mitigate the vulnerability, we present a systematic anomaly detection approach that enables benign vehicles to jointly reveal malicious fabrication. It detects 91.5% of attacks with a false positive rate of 3% in simulated scenarios and significantly mitigates attack impacts in real-world scenarios.

Accurate load forecasting plays a vital role in numerous sectors, but accurately capturing the complex dynamics of dynamic power systems remains a challenge for traditional statistical models. For these reasons, time-series models (ARIMA) and deep-learning models (ANN, LSTM, GRU, etc.) are commonly deployed and often experience higher success. In this paper, we analyze the efficacy of the recently developed Transformer-based Neural Network model in Load forecasting. Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism. We apply several metaheuristics namely Differential Evolution to find the optimal hyperparameters of the Transformer-based Neural Network to produce accurate forecasts. Differential Evolution provides scalable, robust, global solutions to non-differentiable, multi-objective, or constrained optimization problems. Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Our findings demonstrate the potential of metaheuristic-enhanced Transformer-based Neural Network models in Load forecasting accuracy and provide optimal hyperparameters for each model.

Large Language Models (LLMs), acting as a powerful reasoner and generator, exhibit extraordinary performance across various natural language tasks, such as question answering (QA). Among these tasks, Multi-Hop Question Answering (MHQA) stands as a widely discussed category, necessitating seamless integration between LLMs and the retrieval of external knowledge. Existing methods employ LLM to generate reasoning paths and plans, and utilize IR to iteratively retrieve related knowledge, but these approaches have inherent flaws. On one hand, Information Retriever (IR) is hindered by the low quality of generated queries by LLM. On the other hand, LLM is easily misguided by the irrelevant knowledge by IR. These inaccuracies, accumulated by the iterative interaction between IR and LLM, lead to a disaster in effectiveness at the end. To overcome above barriers, in this paper, we propose a novel pipeline for MHQA called Furthest-Reasoning-with-Plan-Assessment (FuRePA), including an improved framework (Furthest Reasoning) and an attached module (Plan Assessor). 1) Furthest reasoning operates by masking previous reasoning path and generated queries for LLM, encouraging LLM generating chain of thought from scratch in each iteration. This approach enables LLM to break the shackle built by previous misleading thoughts and queries (if any). 2) The Plan Assessor is a trained evaluator that selects an appropriate plan from a group of candidate plans proposed by LLM. Our methods are evaluated on three highly recognized public multi-hop question answering datasets and outperform state-of-the-art on most metrics (achieving a 10%-12% in answer accuracy).

People with Visual Impairments (PVI) typically recognize objects through haptic perception. Knowing objects and materials before touching is desired by the target users but under-explored in the field of human-centered robotics. To fill this gap, in this work, a wearable vision-based robotic system, MateRobot, is established for PVI to recognize materials and object categories beforehand. To address the computational constraints of mobile platforms, we propose a lightweight yet accurate model MateViT to perform pixel-wise semantic segmentation, simultaneously recognizing both objects and materials. Our methods achieve respective 40.2% and 51.1% of mIoU on COCOStuff-10K and DMS datasets, surpassing the previous method with +5.7% and +7.0% gains. Moreover, on the field test with participants, our wearable system reaches a score of 28 in the NASA-Task Load Index, indicating low cognitive demands and ease of use. Our MateRobot demonstrates the feasibility of recognizing material property through visual cues and offers a promising step towards improving the functionality of wearable robots for PVI. The source code has been made publicly available at //junweizheng93.github.io/publications/MATERobot/MATERobot.html.

Tracking any given object(s) spatially and temporally is a common purpose in Visual Object Tracking (VOT) and Video Object Segmentation (VOS). Joint tracking and segmentation have been attempted in some studies but they often lack full compatibility of both box and mask in initialization and prediction, and mainly focus on single-object scenarios. To address these limitations, this paper proposes a Multi-object Mask-box Integrated framework for unified Tracking and Segmentation, dubbed MITS. Firstly, the unified identification module is proposed to support both box and mask reference for initialization, where detailed object information is inferred from boxes or directly retained from masks. Additionally, a novel pinpoint box predictor is proposed for accurate multi-object box prediction, facilitating target-oriented representation learning. All target objects are processed simultaneously from encoding to propagation and decoding, as a unified pipeline for VOT and VOS. Experimental results show MITS achieves state-of-the-art performance on both VOT and VOS benchmarks. Notably, MITS surpasses the best prior VOT competitor by around 6% on the GOT-10k test set, and significantly improves the performance of box initialization on VOS benchmarks. The code is available at //github.com/yoxu515/MITS.

As a generalization of the optimal mass transport (OMT) approach of Benamou and Brenier's, the regularized optimal mass transport (rOMT) formulates a transport problem from an initial mass configuration to another with the optimality defined by the total kinetic energy, but subject to an advection-diffusion constraint equation. Both rOMT and the Benamou and Brenier's formulation require the total initial and final masses to be equal; mass is preserved during the entire transport process. However, for many applications, e.g., in dynamic image tracking, this constraint is rarely if ever satisfied. Therefore, we propose to employ an unbalanced version of rOMT to remove this constraint together with a detailed numerical solution procedure and applications to analyzing fluid flows in the brain.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

北京阿比特科技有限公司