The nuclear fuel loading pattern optimization problem belongs to the class of large-scale combinatorial optimization. It is also characterized by multiple objectives and constraints, which makes it impossible to solve explicitly. Stochastic optimization methodologies including Genetic Algorithms and Simulated Annealing are used by different nuclear utilities and vendors, but hand-designed solutions continue to be the prevalent method in the industry. To improve the state-of-the-art, Deep Reinforcement Learning (RL), in particular, Proximal Policy Optimization is leveraged. This work presents a first-of-a-kind approach to utilize deep RL to solve the loading pattern problem and could be leveraged for any engineering design optimization. This paper is also to our knowledge the first to propose a study of the behavior of several hyper-parameters that influence the RL algorithm. The algorithm is highly dependent on multiple factors such as the shape of the objective function derived for the core design that behaves as a fudge factor that affects the stability of the learning. But also, an exploration/exploitation trade-off that manifests through different parameters such as the number of loading patterns seen by the agents per episode, the number of samples collected before a policy update nsteps, and an entropy factor ent_coef that increases the randomness of the policy during training. We found that RL must be applied similarly to a Gaussian Process in which the acquisition function is replaced by a parametrized policy. Then, once an initial set of hyper-parameters is found, reducing nsteps and ent_coef until no more learning is observed will result in the highest sample efficiency robustly and stably. This resulted in an economic benefit of 535,000- 642,000 $/year/plant.
It is shown that a class of optical physical unclonable functions (PUFs) can be learned to arbitrary precision with arbitrarily high probability, even in the presence of noise, given access to polynomially many challenge-response pairs and polynomially bounded computational power, under mild assumptions about the distributions of the noise and challenge vectors. This extends the results of Rh\"uramir et al. (2013), who showed a subset of this class of PUFs to be learnable in polynomial time in the absence of noise, under the assumption that the optics of the PUF were either linear or had negligible nonlinear effects. We derive polynomial bounds for the required number of samples and the computational complexity of a linear regression algorithm, based on size parameters of the PUF, the distributions of the challenge and noise vectors, and the probability and accuracy of the regression algorithm, with a similar analysis to one done by Bootle et al. (2018), who demonstrated a learning attack on a poorly implemented version of the Learning With Errors problem.
The large-scale simulation of dynamical systems is critical in numerous scientific and engineering disciplines. However, traditional numerical solvers are limited by the choice of step sizes when estimating integration, resulting in a trade-off between accuracy and computational efficiency. To address this challenge, we introduce a deep learning-based corrector called Neural Vector (NeurVec), which can compensate for integration errors and enable larger time step sizes in simulations. Our extensive experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability on a continuous phase space, even when trained using limited and discrete data. NeurVec significantly accelerates traditional solvers, achieving speeds tens to hundreds of times faster while maintaining high levels of accuracy and stability. Moreover, NeurVec's simple-yet-effective design, combined with its ease of implementation, has the potential to establish a new paradigm for fast-solving differential equations based on deep learning.
First-order energy dissipative schemes in time are available in literature for the Poisson-Nernst-Planck (PNP) equations, but second-order ones are still in lack. This work proposes novel second-order discretization in time and finite volume discretization in space for modified PNP equations that incorporate effects arising from ionic steric interactions and dielectric inhomogeneity. A multislope method on unstructured meshes is proposed to reconstruct positive, accurate approximations of mobilities on faces of control volumes. Numerical analysis proves that the proposed numerical schemes are able to unconditionally ensure the existence of positive numerical solutions, original energy dissipation, mass conservation, and preservation of steady states at discrete level. Extensive numerical simulations are conducted to demonstrate numerical accuracy and performance in preserving properties of physical significance. Applications in ion permeation through a 3D nanopore show that the modified PNP model, equipped with the proposed schemes, has promising applications in the investigation of ion selectivity and rectification. The proposed second-order discretization can be extended to design temporal second-order schemes with original energy dissipation for a type of gradient flow problems with entropy.
Recent work demonstrated the existence of Boolean functions for which Shapley values provide misleading information about the relative importance of features in rule-based explanations. Such misleading information was broadly categorized into a number of possible issues. Each of those issues relates with features being relevant or irrelevant for a prediction, and all are significant regarding the inadequacy of Shapley values for rule-based explainability. This earlier work devised a brute-force approach to identify Boolean functions, defined on small numbers of features, and also associated instances, which displayed such inadequacy-revealing issues, and so served as evidence to the inadequacy of Shapley values for rule-based explainability. However, an outstanding question is how frequently such inadequacy-revealing issues can occur for Boolean functions with arbitrary large numbers of features. It is plain that a brute-force approach would be unlikely to provide insights on how to tackle this question. This paper answers the above question by proving that, for any number of features, there exist Boolean functions that exhibit one or more inadequacy-revealing issues, thereby contributing decisive arguments against the use of Shapley values as the theoretical underpinning of feature-attribution methods in explainability.
Emotion recognition is a complex task due to the inherent subjectivity in both the perception and production of emotions. The subjectivity of emotions poses significant challenges in developing accurate and robust computational models. This thesis examines critical facets of emotion recognition, beginning with the collection of diverse datasets that account for psychological factors in emotion production. To handle the challenge of non-representative training data, this work collects the Multimodal Stressed Emotion dataset, which introduces controlled stressors during data collection to better represent real-world influences on emotion production. To address issues with label subjectivity, this research comprehensively analyzes how data augmentation techniques and annotation schemes impact emotion perception and annotator labels. It further handles natural confounding variables and variations by employing adversarial networks to isolate key factors like stress from learned emotion representations during model training. For tackling concerns about leakage of sensitive demographic variables, this work leverages adversarial learning to strip sensitive demographic information from multimodal encodings. Additionally, it proposes optimized sociological evaluation metrics aligned with cost-effective, real-world needs for model testing. This research advances robust, practical emotion recognition through multifaceted studies of challenges in datasets, labels, modeling, demographic and membership variable encoding in representations, and evaluation. The groundwork has been laid for cost-effective, generalizable emotion recognition models that are less likely to encode sensitive demographic information.
The major advantage of reduced magnetic vector potential formulations (RMVPs) is that complicated coil structures do not need to be resolved by a computational mesh. Instead, they are modeled by thin wires, whose source field is included into the simulation model along Biot-Savart's law. Such an approach has already been successfully employed in ROXIE for the simulation of superconducting Large Hadron Collider magnets at CERN. This work presents an updated RMVP approach, which significantly outperforms the original method. The updated formulation is postulated, implemented, verified, compared to the original formulation, and applied for the simulation of a quadrupole magnet. The promising results of this work encourage further investigation towards an updated simulation framework for next-generation accelerator magnets.
Despite decades of research, developing correct and scalable concurrent programs is still challenging. Network functions (NFs) are not an exception. This paper presents NFork, a system that helps NF domain experts to productively develop concurrent NFs by abstracting away concurrency from developers. The key scheme behind NFork's design is to exploit NF characteristics to overcome the limitations of prior work on concurrency programming. Developers write NFs as sequential programs, and during runtime, NFork performs transparent parallelization by processing packets in different cores. Exploiting NF characteristics, NFork leverages transactional memory and develops efficient concurrent data structures to achieve scalability and guarantee the absence of concurrency bugs. Since NFork manages concurrency, it further provides (i) a profiler that reveals the root causes of scalability bottlenecks inherent to the NF's semantics and (ii) actionable recipes for developers to mitigate these root causes by relaxing the NF's semantics. We show that NFs developed with NFork achieve competitive scalability with those in Cisco VPP [16], and NFork's profiler and recipes can effectively aid developers in optimizing NF scalability.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.