亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider an integrated data and energy network and D2D communication coexistence (DED2D) system. The DED2D system allows a base station (BS) to transfer data to information-demanded users (IUs) and energy to energy-demanded users (EUs), i.e., using a time-fraction-based information and energy transfer (TFIET) scheme. Furthermore, the DED2D system enables D2D communications to share spectrum with the BS. Therefore, the DED2D system addresses the growth of energy and spectrum demands of the next generation networks. However, the interference caused by the D2D communications and propagation loss of wireless links can significantly degrade the data throughput of IUs. To deal with the issues, we propose to deploy an intelligent reflecting surface (IRS) in the DED2D system. Then, we formulate an optimization problem that aims to optimize the information beamformer for the IUs, energy beamformer for EUs, time fractions of the TFIET, transmit power of D2D transmitters, and reflection coefficients of the IRS to maximize IUs' worse throughput while satisfying the harvested energy requirement of EUs and D2D rate threshold. The max-min throughput optimization problem is computationally intractable, and we develop an alternating descent algorithm to resolve it with low computational complexity. The simulation results demonstrate the effectiveness of the proposed algorithm.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Many additive manufacturing (AM) technologies rely on powder feedstock, which is fused to form the final part either by melting or by chemical binding with subsequent sintering. In both cases, process stability and resulting part quality depend on dynamic interactions between powder particles and a fluid phase, i.e., molten metal or liquid binder. The present work proposes a versatile computational modeling framework for simulating such coupled microfluid-powder dynamics problems involving thermo-capillary flow and reversible phase transitions. In particular, a liquid and a gas phase are interacting with a solid phase that consists of a substrate and mobile powder particles while simultaneously considering temperature-dependent surface tension and wetting effects. In case of laser-metal interactions, the effect of rapid evaporation is incorporated through additional mechanical and thermal interface fluxes. All phase domains are spatially discretized using smoothed particle hydrodynamics. The method's Lagrangian nature is beneficial in the context of dynamically changing interface topologies. Special care is taken in the formulation of phase transitions, which is crucial for the robustness of the computational scheme. While the underlying model equations are of a very general nature, the proposed framework is especially suitable for the mesoscale modeling of various AM processes. To this end, the generality and robustness of the computational modeling framework is demonstrated by several application-motivated examples representing the specific AM processes binder jetting, material jetting, directed energy deposition, and powder bed fusion. Among others, it is shown how the dynamic impact of droplets in binder jetting or the evaporation-induced recoil pressure in powder bed fusion leads to powder motion, distortion of the powder packing structure, and powder particle ejection.

Distributed Artificial Intelligence (DAI) is regarded as one of the most promising techniques to provide intelligent services under strict privacy protection regulations for multiple clients. By applying DAI, training on raw data is carried out locally, while the trained outputs, e.g., model parameters, from multiple local clients, are sent back to a central server for aggregation. Recently, for achieving better practicality, DAI is studied in conjunction with wireless communication networks, incorporating various random effects brought by wireless channels. However, because of the complex and case-dependent nature of wireless channels, a generic simulator for applying DAI in wireless communication networks is still lacking. To accelerate the development of DAI applied in wireless communication networks, we propose a generic system design in this paper as well as an associated simulator that can be set according to wireless channels and system-level configurations. Details of the system design and analysis of the impacts of wireless environments are provided to facilitate further implementations and updates. We employ a series of experiments to verify the effectiveness and efficiency of the proposed system design and reveal its superior scalability.

The introduction of the mm-Wave spectrum into 5G NR promises to bring about unprecedented data throughput to future mobile wireless networks but comes with several challenges. Network densification has been proposed as a viable solution to increase RAN resilience, and the newly introduced Integrated-Access-and-Backhaul (IAB) is considered a key enabling technology with compelling cost-reducing opportunities for such dense deployments. Reconfigurable Intelligent Surfaces (RIS) have recently gained extreme popularity as they can create Smart Radio Environments by EM wave manipulation and behave as inexpensive passive relays. However, it is not yet clear what role this technology can play in a large RAN deployment. With the scope of filling this gap, we study the blockage resilience of realistic mm-Wave RAN deployments that use IAB and RIS. The RAN layouts have been optimised by means of a novel mm-Wave planning tool based on MILP formulation. Numerical results show how adding RISs to IAB deployments can provide high blockage resistance levels while significantly reducing the overall network planning cost.

In this paper, to address backhaul capacity bottleneck and concurrently optimize energy consumption and delay, we formulate a novel weighted-sum multi-objective optimization problem where popular content caching placement and integrated access and backhaul (IAB) millimeter (mmWave) bandwidth partitioning are optimized jointly to provide Pareto efficient optimal non-dominating solutions. In such integrated networks analysis of what-if scenarios to understand trade-offs in decision space, without losing sight of optimality, is important. A wide set of numerical investigations reveal that compared with the nominal single objective optimization schemes such as optimizing only the delay or the energy consumption the proposed optimization framework allows for a reduction of the aggregation of energy consumption and delay by an average of 30% to 55%.

Network management is a fundamental ingredient for efficient operation of wireless networks. With increasing bandwidth, number of antennas and number of users, the amount of information required for network management increases significantly. Therefore, distributed network management is a key to efficient operation of future networks. This paper focuses on the problem of distributed joint beamforming control and power allocation in ad-hoc mmWave networks. Over the shared spectrum, a number of multi-input-multi-output links attempt to minimize their supply power by simultaneously finding the locally optimal power allocation and beamformers in a self-organized manner. Our design considers a family of non-convex quality-of-service constraint and utility functions characterized by monotonicity in the strategies of the various users. We propose a two-stage, decentralized optimization scheme, where the adaptation of power levels and beamformer coefficients are iteratively performed by each link. We first prove that given a set of receive beamformers, the power allocation stage converges to an optimal generalized Nash equilibrium of the generalized power allocation game. Then we prove that iterative minimum-mean-square-error adaptation of the receive beamformer results in an overall converging scheme. Several transmit beamforming schemes requiring different levels of information exchange are also compared in the proposed allocation framework. Our simulation results show that allowing each link to optimize its transmit filters using the direct channel results in a near optimum performance with very low computational complexity, even though the problem is highly non-convex.

The state of art of electromagnetic integral equations has seen significant growth over the past few decades, overcoming some of the fundamental bottlenecks: computational complexity, low frequency and dense discretization breakdown, preconditioning, and so on. Likewise, the community has seen extensive investment in development of methods for higher order analysis, in both geometry and physics. Unfortunately, these standard geometric descriptors are continuous, but their normals are discontinuous at the boundary between triangular tessellations of control nodes, or patches, with a few exceptions; as a result, one needs to define additional mathematical infrastructure to define physical basis sets for vector problems. In stark contrast, the geometric representation used for design are second order differentiable almost everywhere on the surfaces. Using these description for analysis opens the door to several possibilities, and is the area we explore in this paper. Our focus is on Loop subdivision based isogeometric methods. In this paper, our goals are two fold: (i) development of computational infrastructure for isogeometric analysis of electrically large simply connected objects, and (ii) to introduce the notion of manifold harmonics transforms and its utility in computational electromagnetics. Several results highlighting the efficacy of these two methods are presented.

We consider online wireless network virtualization (WNV) in a multi-cell multiple-input multiple output (MIMO) system with delayed feedback of channel state information (CSI). Multiple service providers (SPs) simultaneously share the base station resources of an infrastructure provider (InP). We aim at minimizing the accumulated precoding deviation of the InP's actual precoder from the SPs' virtualization demands via managing both inter-SP and inter-cell interference, subject to both long-term and short-term per-cell transmit power constraints. We develop an online coordinated precoding solution and show that it provides provable performance bounds. Our precoding solution is fully distributed at each cell, based only on delayed local CSI. Furthermore, it has a closed-form expression with low computational complexity. Finally, simulation results demonstrate the substantial performance gain of our precoding solution over the current best alternative.

Integrated sensing and communication (ISAC) has been regarded as one of the most promising technologies for future wireless communications. However, the mutual interference in the communication radar coexistence system cannot be ignored. Inspired by the studies of reconfigurable intelligent surface (RIS), we propose a double-RIS-assisted coexistence system where two RISs are deployed for enhancing communication signals and suppressing mutual interference. We aim to jointly optimize the beamforming of RISs and radar to maximize communication performance while maintaining radar detection performance. The investigated problem is challenging, and thus we transform it into an equivalent but more tractable form by introducing auxiliary variables. Then, we propose a penalty dual decomposition (PDD)-based algorithm to solve the resultant problem. Moreover, we consider two special cases: the large radar transmit power scenario and the low radar transmit power scenario. For the former, we prove that the beamforming design is only determined by the communication channel and the corresponding optimal joint beamforming strategy can be obtained in closed-form. For the latter, we minimize the mutual interference via the block coordinate descent (BCD) method. By combining the solutions of these two cases, a low-complexity algorithm is also developed. Finally, simulation results show that both the PDD-based and low-complexity algorithms outperform benchmark algorithms.

This paper considers the integrated problem of quay crane assignment, quay crane scheduling, yard location assignment, and vehicle dispatching operations at a container terminal. The main objective is to minimize vessel turnover times and maximize the terminal throughput, which are key economic drivers in terminal operations. Due to their computational complexities, these problems are not optimized jointly in existing work. This paper revisits this limitation and proposes Mixed Integer Programming (MIP) and Constraint Programming (CP) models for the integrated problem, under some realistic assumptions. Experimental results show that the MIP formulation can only solve small instances, while the CP model finds optimal solutions in reasonable times for realistic instances derived from actual container terminal operations.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司