Many additive manufacturing (AM) technologies rely on powder feedstock, which is fused to form the final part either by melting or by chemical binding with subsequent sintering. In both cases, process stability and resulting part quality depend on dynamic interactions between powder particles and a fluid phase, i.e., molten metal or liquid binder. The present work proposes a versatile computational modeling framework for simulating such coupled microfluid-powder dynamics problems involving thermo-capillary flow and reversible phase transitions. In particular, a liquid and a gas phase are interacting with a solid phase that consists of a substrate and mobile powder particles while simultaneously considering temperature-dependent surface tension and wetting effects. In case of laser-metal interactions, the effect of rapid evaporation is incorporated through additional mechanical and thermal interface fluxes. All phase domains are spatially discretized using smoothed particle hydrodynamics. The method's Lagrangian nature is beneficial in the context of dynamically changing interface topologies. Special care is taken in the formulation of phase transitions, which is crucial for the robustness of the computational scheme. While the underlying model equations are of a very general nature, the proposed framework is especially suitable for the mesoscale modeling of various AM processes. To this end, the generality and robustness of the computational modeling framework is demonstrated by several application-motivated examples representing the specific AM processes binder jetting, material jetting, directed energy deposition, and powder bed fusion. Among others, it is shown how the dynamic impact of droplets in binder jetting or the evaporation-induced recoil pressure in powder bed fusion leads to powder motion, distortion of the powder packing structure, and powder particle ejection.
The human footprint is having a unique set of ridges unmatched by any other human being, and therefore it can be used in different identity documents for example birth certificate, Indian biometric identification system AADHAR card, driving license, PAN card, and passport. There are many instances of the crime scene where an accused must walk around and left the footwear impressions as well as barefoot prints and therefore, it is very crucial to recovering the footprints from identifying the criminals. Footprint-based biometric is a considerably newer technique for personal identification. Fingerprints, retina, iris and face recognition are the methods most useful for attendance record of the person. This time the world is facing the problem of global terrorism. It is challenging to identify the terrorist because they are living as regular as the citizens do. Their soft target includes the industries of special interests such as defence, silicon and nanotechnology chip manufacturing units, pharmacy sectors. They pretend themselves as religious persons, so temples and other holy places, even in markets is in their targets. These are the places where one can obtain their footprints quickly. The gait itself is sufficient to predict the behaviour of the suspects. The present research is driven to identify the usefulness of footprint and gait as an alternative to personal identification.
Computer models are widely used in decision support for energy systems operation, planning and policy. A system of models is often employed, where model inputs themselves arise from other computer models, with each model being developed by different teams of experts. Gaussian Process emulators can be used to approximate the behaviour of complex, computationally intensive models and used to generate predictions together with a measure of uncertainty about the predicted model output. This paper presents a computationally efficient framework for propagating uncertainty within a network of models with high-dimensional outputs used for energy planning. We present a case study from a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. The system model considered for this case study is simple, however the framework can be applied to larger networks of more complex models.
Reinforcement Learning (RL) approaches are lately deployed for orchestrating wireless communications empowered by Reconfigurable Intelligent Surfaces (RISs), leveraging their online optimization capabilities. Most commonly, in RL-based formulations for realistic RISs with low resolution phase-tunable elements, each configuration is modeled as a distinct reflection action, resulting to inefficient exploration due to the exponential nature of the search space. In this paper, we consider RISs with 1-bit phase resolution elements, and model the action of each of them as a binary vector including the feasible reflection coefficients. We then introduce two variations of the well-established Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) agents, aiming for effective exploration of the binary action spaces. For the case of DQN, we make use of an efficient approximation of the Q-function, whereas a discretization post-processing step is applied to the output of DDPG. Our simulation results showcase that the proposed techniques greatly outperform the baseline in terms of the rate maximization objective, when large-scale RISs are considered. In addition, when dealing with moderate scale RIS sizes, where the conventional DQN based on configuration-based action spaces is feasible, the performance of the latter technique is similar to the proposed learning approach.
There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). This article is to propose a Deep Learning Galerkin Method (DGM) for the closed-loop geothermal system, which is a new coupled multi-physics PDEs and mainly consists of a framework of underground heat exchange pipelines to extract the geothermal heat from the geothermal reservoir. This method is a natural combination of Galerkin Method and machine learning with the solution approximated by a neural network instead of a linear combination of basis functions. We train the neural network by randomly sampling the spatiotemporal points and minimize loss function to satisfy the differential operators, initial condition, boundary and interface conditions. Moreover, the approximate ability of the neural network is proved by the convergence of the loss function and the convergence of the neural network to the exact solution in L^2 norm under certain conditions. Finally, some numerical examples are carried out to demonstrate the approximation ability of the neural networks intuitively.
In this article we suggest two discretization methods based on isogeometric analysis (IGA) for planar linear elasticity. On the one hand, we apply the well-known ansatz of weakly imposed symmetry for the stress tensor and obtain a well-posed mixed formulation. Such modified mixed problems have been already studied by different authors. But we concentrate on the exploitation of IGA results to handle also curved boundary geometries. On the other hand, we consider the more complicated situation of strong symmetry, i.e. we discretize the mixed weak form determined by the so-called Hellinger-Reissner variational principle. We show the existence of suitable approximate fields leading to an inf-sup stable saddle-point problem. For both discretization approaches we prove convergence statements and in case of weak symmetry we illustrate the approximation behavior by means of several numerical experiments.
Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.
The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.
This paper presents a density-based topology optimization approach considering additive manufacturing limitations. The presented method considers the minimum size of parts, the minimum size of cavities, the inability of printing overhanging parts without the use of sacrificial supporting structures, and the printing directions. These constraints are geometrically addressed and implemented. The minimum size on solid and void zones is imposed through a well-known filtering technique. The sacrificial support material is reduced using a constraint that limits the maximum overhang angle of parts by comparing the structural gradient with a critical reference slope. Due to the local nature of the gradient, the chosen restriction is prone to introduce parts that meet the structural slope but that may not be self-supporting. The restriction limits the maximum overhang angle for a user-defined printing direction, which could reduce structural performance if the orientation is not properly selected. To ease these challenges, a new approach to reduce the introduction of such non-self-supporting parts and a novel method that includes different printing directions in the maximum overhang angle constraint are presented. The proposed strategy for considering the minimum size of solid and void phases, maximum overhang angle, and printing direction, is illustrated by solving a set of 2D benchmark design problems including stiff structures and compliant mechanisms. We also provide MATLAB codes in the appendix for educational purposes and for replication of the results.
We introduce a fast solver for the phase field crystal (PFC) and functionalized Cahn-Hilliard (FCH) equations with periodic boundary conditions on a rectangular domain that features the preconditioned Nesterov accelerated gradient descent (PAGD) method. We discretize these problems with a Fourier collocation method in space, and employ various second-order schemes in time. We observe a significant speedup with this solver when compared to the preconditioned gradient descent (PGD) method. With the PAGD solver, fully implicit, second-order-in-time schemes are not only feasible to solve the PFC and FCH equations, but also do so more efficiently than some semi-implicit schemes in some cases where accuracy issues are taken into account. Benchmark computations of five different schemes for the PFC and FCH equations are conducted and the results indicate that, for the FCH experiments, the fully implicit schemes (midpoint rule and BDF2 equipped with the PAGD as a nonlinear time marching solver) perform better than their IMEX versions in terms of computational cost needed to achieve a certain precision. For the PFC, the results are not as conclusive as in the FCH experiments, which, we believe, is due to the fact that the nonlinearity in the PFC is milder nature compared to the FCH equation. We also discuss some practical matters in applying the PAGD. We introduce an averaged Newton preconditioner and a sweeping-friction strategy as heuristic ways to choose good preconditioner parameters. The sweeping-friction strategy exhibits almost as good a performance as the case of the best manually tuned parameters.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.