亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph Hypernetworks (GHN) can predict the parameters of varying unseen CNN architectures with surprisingly good accuracy at a fraction of the cost of iterative optimization. Following these successes, preliminary research has explored the use of GHNs to predict quantization-robust parameters for 8-bit and 4-bit quantized CNNs. However, this early work leveraged full-precision float32 training and only quantized for testing. We explore the impact of quantization-aware training and/or other quantization-based training strategies on quantized robustness and performance of GHN predicted parameters for low-precision CNNs. We show that quantization-aware training can significantly improve quantized accuracy for GHN predicted parameters of 4-bit quantized CNNs and even lead to greater-than-random accuracy for 2-bit quantized CNNs. These promising results open the door for future explorations such as investigating the use of GHN predicted parameters as initialization for further quantized training of individual CNNs, further exploration of "extreme bitwidth" quantization, and mixed precision quantization schemes.

相關內容

Existing video compression (VC) methods primarily aim to reduce the spatial and temporal redundancies between consecutive frames in a video while preserving its quality. In this regard, previous works have achieved remarkable results on videos acquired under specific settings such as instant (known) exposure time and shutter speed which often result in sharp videos. However, when these methods are evaluated on videos captured under different temporal priors, which lead to degradations like motion blur and low frame rate, they fail to maintain the quality of the contents. In this work, we tackle the VC problem in a general scenario where a given video can be blurry due to predefined camera settings or dynamics in the scene. By exploiting the natural trade-off between visual enhancement and data compression, we formulate VC as a min-max optimization problem and propose an effective framework and training strategy to tackle the problem. Extensive experimental results on several benchmark datasets confirm the effectiveness of our method compared to several state-of-the-art VC approaches.

As the complexity of System-on-Chip (SoC) designs continues to increase, ensuring thorough verification becomes a significant challenge for system integrators. The complexity of verification can result in undetected bugs. Unlike software or firmware bugs, hardware bugs are hard to fix after deployment and they require additional logic, i.e., patching logic integrated with the design in advance in order to patch. However, the absence of a standardized metric for defining "patchability" leaves system integrators relying on their understanding of each IP and security requirements to engineer ad hoc patching designs. In this paper, we propose a theoretical patchability quantification method to analyze designs at the Register Transfer Level (RTL) with provided patching options. Our quantification defines patchability as a combination of observability and controllability so that we can analyze and compare the patchability of IP variations. This quantification is a systematic approach to estimate each patching architecture's ability to patch at run-time and complements existing patching works. In experiments, we compare several design options of the same patching architecture and discuss their differences in terms of theoretical patchability and how many potential weaknesses can be mitigated.

Objective: We aimed to determine the relationship between day-to-day sleep efficiency variability and cognitive function among older adults using accelerometer data and three cognitive tests. Methods: Older adults aged 65+ with 5 days of accelerometer data from the National Health and Nutrition Examination Survey (NHANES) who completed the Digit Symbol Substitution Test (DSST), the Consortium to Establish a Registry for Alzheimers Disease Word-Learning subtest (CERAD WL), and Animal Fluency Test (AFT) were included in this study. Associations between sleep efficiency variability and each cognitive test were examined adjusted for age, sex, education, household income, marital status, depressive symptoms, diabetes, smoking habits, alcohol consumption, arthritis, heart disease, prior heart attack, prior stroke, activities of daily living, and instrumental activities of daily living. Results: A total of 1074 older adults were included in this study. Greater sleep efficiency variability was univariably associated with worse cognitive function based on the DSST (per 10% increase, Beta -3.34, 95% CI -5.33 to -1.34), CERAD-WL (per 10% increase, Beta -1.00, 95% CI -1.79 to -0.21), and AFT (per 10% increase, Beta -1.02, 95% CI -1.68 to -0.36). In adjusted models, greater sleep efficiency variability remained associated with lower DSST (per 10% increase, Beta -2.01, 95% CI -3.62 to -0.40) and AFT (per 10% increase, Beta -0.84, 95% CI -1.47 to -0.21) scores but not CERAD WL scores. Conclusions: Targeting consistency regarding sleep quality may be useful for interventions seeking to preserve cognitive function among older adults.

We present Multi-EuP, a new multilingual benchmark dataset, comprising 22K multi-lingual documents collected from the European Parliament, spanning 24 languages. This dataset is designed to investigate fairness in a multilingual information retrieval (IR) context to analyze both language and demographic bias in a ranking context. It boasts an authentic multilingual corpus, featuring topics translated into all 24 languages, as well as cross-lingual relevance judgments. Furthermore, it offers rich demographic information associated with its documents, facilitating the study of demographic bias. We report the effectiveness of Multi-EuP for benchmarking both monolingual and multilingual IR. We also conduct a preliminary experiment on language bias caused by the choice of tokenization strategy.

Current methods based on Neural Radiance Fields (NeRF) significantly lack the capacity to quantify uncertainty in their predictions, particularly on the unseen space including the occluded and outside scene content. This limitation hinders their extensive applications in robotics, where the reliability of model predictions has to be considered for tasks such as robotic exploration and planning in unknown environments. To address this, we propose a novel approach to estimate a 3D Uncertainty Field based on the learned incomplete scene geometry, which explicitly identifies these unseen regions. By considering the accumulated transmittance along each camera ray, our Uncertainty Field infers 2D pixel-wise uncertainty, exhibiting high values for rays directly casting towards occluded or outside the scene content. To quantify the uncertainty on the learned surface, we model a stochastic radiance field. Our experiments demonstrate that our approach is the only one that can explicitly reason about high uncertainty both on 3D unseen regions and its involved 2D rendered pixels, compared with recent methods. Furthermore, we illustrate that our designed uncertainty field is ideally suited for real-world robotics tasks, such as next-best-view selection.

Submarine cables constitute the backbone of the Internet. However, these critical infrastructure components are vulnerable to several natural and man-made threats, and during failures, are difficult to repair in their remote oceanic environments. In spite of their crucial role, we have a limited understanding of the impact of submarine cable failures on global connectivity, particularly on the higher layers of the Internet. In this paper, we present Nautilus, a framework for cross-layer cartography of submarine cables and IP links. Using a corpus of public datasets and Internet cartographic techniques, Nautilus identifies IP links that are likely traversing submarine cables and maps them to one or more potential cables. Nautilus also gives each IP to cable assignment a prediction score that reflects the confidence in the mapping. Nautilus generates a mapping for 3.05 million and 1.43 million IPv4 and IPv6 links respectively, covering 91% of all active cables. In the absence of ground truth data, we validate Nautilus mapping using three techniques: analyzing past cable failures, using targeted traceroute measurements, and comparing with public network maps of two operators.

There is currently a significant gap between the performance of fine-tuned models and prompting approaches using Large Language Models (LLMs) on the challenging task of text-to-SQL, as evaluated on datasets such as Spider. To improve the performance of LLMs in the reasoning process, we study how decomposing the task into smaller sub-tasks can be effective. In particular, we show that breaking down the generation problem into sub-problems and feeding the solutions of those sub-problems into LLMs can be an effective approach for significantly improving their performance. Our experiments with three LLMs show that this approach consistently improves their simple few-shot performance by roughly 10%, pushing the accuracy of LLMs towards SOTA or surpassing it. On the holdout test set of Spider, the SOTA, in terms of execution accuracy, was 79.9 and the new SOTA at the time of this writing using our approach is 85.3. Our approach with in-context learning beats many heavily fine-tuned models by at least 5%. Additionally, when evaluated on the BIRD benchmark, our approach achieved an execution accuracy of 55.9%, setting a new SOTA on its holdout test set.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

北京阿比特科技有限公司