亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Feature visualization is used to visualize learned features for black box machine learning models. Our approach explores an altered training process to improve interpretability of the visualizations. We argue that by using background removal techniques as a form of robust training, a network is forced to learn more human recognizable features, namely, by focusing on the main object of interest without any distractions from the background. Four different training methods were used to verify this hypothesis. The first used unmodified pictures. The second used a black background. The third utilized Gaussian noise as the background. The fourth approach employed a mix of background removed images and unmodified images. The feature visualization results show that the background removed images reveal a significant improvement over the baseline model. These new results displayed easily recognizable features from their respective classes, unlike the model trained on unmodified data.

相關內容

Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches.

Deep neural networks are vulnerable to adversarial examples, dictating the imperativeness to test the model's robustness before deployment. Transfer-based attackers craft adversarial examples against surrogate models and transfer them to victim models deployed in the black-box situation. To enhance the adversarial transferability, structure-based attackers adjust the backpropagation path to avoid the attack from overfitting the surrogate model. However, existing structure-based attackers fail to explore the convolution module in CNNs and modify the backpropagation graph heuristically, leading to limited effectiveness. In this paper, we propose backPropagation pAth Search (PAS), solving the aforementioned two problems. We first propose SkipConv to adjust the backpropagation path of convolution by structural reparameterization. To overcome the drawback of heuristically designed backpropagation paths, we further construct a DAG-based search space, utilize one-step approximation for path evaluation and employ Bayesian Optimization to search for the optimal path. We conduct comprehensive experiments in a wide range of transfer settings, showing that PAS improves the attack success rate by a huge margin for both normally trained and defense models.

Large language models (LLMs) are demonstrating significant promise as an alternate strategy to facilitate analyses and optimizations of high-performance computing programs, circumventing the need for resource-intensive manual tool creation. In this paper, we explore a novel LLM-based data race detection approach combining prompting engineering and fine-tuning techniques. We create a dedicated dataset named DRB-ML, which is derived from DataRaceBench, with fine-grain labels showing the presence of data race pairs and their associated variables, line numbers, and read/write information. DRB-ML is then used to evaluate representative LLMs and fine-tune open-source ones. Our experiment shows that LLMs can be a viable approach to data race detection. However, they still cannot compete with traditional data race detection tools when we need detailed information about variable pairs causing data races.

Performance estimation under covariate shift is a crucial component of safe AI model deployment, especially for sensitive use-cases. Recently, several solutions were proposed to tackle this problem, most leveraging model predictions or softmax confidence to derive accuracy estimates. However, under dataset shifts, confidence scores may become ill-calibrated if samples are too far from the training distribution. In this work, we show that taking into account distances of test samples to their expected training distribution can significantly improve performance estimation under covariate shift. Precisely, we introduce a "distance-check" to flag samples that lie too far from the expected distribution, to avoid relying on their untrustworthy model outputs in the accuracy estimation step. We demonstrate the effectiveness of this method on 13 image classification tasks, across a wide-range of natural and synthetic distribution shifts and hundreds of models, with a median relative MAE improvement of 27% over the best baseline across all tasks, and SOTA performance on 10 out of 13 tasks. Our code is publicly available at //github.com/melanibe/distance_matters_performance_estimation.

Conversational recommender systems (CRSs) aim to recommend high-quality items to users through a dialogue interface. It usually contains multiple sub-tasks, such as user preference elicitation, recommendation, explanation, and item information search. To develop effective CRSs, there are some challenges: 1) how to properly manage sub-tasks; 2) how to effectively solve different sub-tasks; and 3) how to correctly generate responses that interact with users. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to reason and generate, presenting a new opportunity to develop more powerful CRSs. In this work, we propose a new LLM-based CRS, referred to as LLMCRS, to address the above challenges. For sub-task management, we leverage the reasoning ability of LLM to effectively manage sub-task. For sub-task solving, we collaborate LLM with expert models of different sub-tasks to achieve the enhanced performance. For response generation, we utilize the generation ability of LLM as a language interface to better interact with users. Specifically, LLMCRS divides the workflow into four stages: sub-task detection, model matching, sub-task execution, and response generation. LLMCRS also designs schema-based instruction, demonstration-based instruction, dynamic sub-task and model matching, and summary-based generation to instruct LLM to generate desired results in the workflow. Finally, to adapt LLM to conversational recommendations, we also propose to fine-tune LLM with reinforcement learning from CRSs performance feedback, referred to as RLPF. Experimental results on benchmark datasets show that LLMCRS with RLPF outperforms the existing methods.

Most NeRF-based models are designed for learning the entire scene, and complex scenes can lead to longer learning times and poorer rendering effects. This paper utilizes scene semantic priors to make improvements in fast training, allowing the network to focus on the specific targets and not be affected by complex backgrounds. The training speed can be increased by 7.78 times with better rendering effect, and small to medium sized targets can be rendered faster. In addition, this improvement applies to all NeRF-based models. Considering the inherent multi-view consistency and smoothness of NeRF, this paper also studies weak supervision by sparsely sampling negative ray samples. With this method, training can be further accelerated and rendering quality can be maintained. Finally, this paper extends pixel semantic and color rendering formulas and proposes a new scene editing technique that can achieve unique displays of the specific semantic targets or masking them in rendering. To address the problem of unsupervised regions incorrect inferences in the scene, we also designed a self-supervised loop that combines morphological operations and clustering.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司