亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Climate hazards can cause major disasters when they occur simultaneously as compound hazards. To understand the distribution of climate risk and inform adaptation policies, scientists need to simulate a large number of physically realistic and spatially coherent events. Current methods are limited by computational constraints and the probabilistic spatial distribution of compound events is not given sufficient attention. The bottleneck in current approaches lies in modelling the dependence structure between variables, as inference on parametric models suffers from the curse of dimensionality. Generative adversarial networks (GANs) are well-suited to such a problem due to their ability to implicitly learn the distribution of data in high-dimensional settings. We employ a GAN to model the dependence structure for daily maximum wind speed, significant wave height, and total precipitation over the Bay of Bengal, combining this with traditional extreme value theory for controlled extrapolation of the tails. Once trained, the model can be used to efficiently generate thousands of realistic compound hazard events, which can inform climate risk assessments for climate adaptation and disaster preparedness. The method developed is flexible and transferable to other multivariate and spatial climate datasets.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 極小點 · 情景 · 優化器 · ·
2024 年 1 月 22 日

We consider the minimum weight and smallest weight minimum-size dominating set problems in vertex-weighted graphs and networks. The latter problem is a two-objective optimization problem, which is different from the classic minimum weight dominating set problem that requires finding a dominating set of the smallest weight in a graph without trying to optimize its cardinality. In other words, the objective of minimizing the size of the dominating set in the two-objective problem can be considered as a constraint, i.e. a particular case of finding Pareto-optimal solutions. First, we show how to reduce the two-objective optimization problem to the minimum weight dominating set problem by using Integer Linear Programming formulations. Then, under different assumptions, the probabilistic method is applied to obtain upper bounds on the minimum weight dominating sets in graphs. The corresponding randomized algorithms for finding small-weight dominating sets in graphs are described as well. Computational experiments are used to illustrate the results for two different types of random graphs.

We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty, the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations, these approximations are faster and more accurate than Monte Carlo or similar sampling-based strategies. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.

Recently, a family of unconventional integrators for ODEs with polynomial vector fields was proposed, based on the polarization of vector fields. The simplest instance is the by now famous Kahan discretization for quadratic vector fields. All these integrators seem to possess remarkable conservation properties. In particular, it has been proved that, when the underlying ODE is Hamiltonian, its polarization discretization possesses an integral of motion and an invariant volume form. In this note, we propose a new algebraic approach to derivation of the integrals of motion for polarization discretizations.

The Boundary Element Method (BEM) is implemented using piecewise linear elements to solve the two-dimensional Dirichlet problem for Laplace's equation posed on a disk. A benefit of the BEM as opposed to many other numerical solution techniques is that discretization only occurs on the boundary, i.e., the complete domain does not need to be discretized. This provides an advantage in terms of time and cost. The algorithm's performance is illustrated through sample test problems with known solutions. A comparison between the exact solution and the BEM numerical solution is done, and error analysis is performed on the results.

Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for {\it all} fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds. Let $A_q(n,w,d)$ denote the maximum size of $q$-ary CWCs of length $n$ with constant weight $w$ and minimum distance $d$. One of our main results shows that for {\it all} fixed $q,w$ and odd $d$, one has $\lim_{n\rightarrow\infty}\frac{A_q(n,d,w)}{\binom{n}{t}}=\frac{(q-1)^t}{\binom{w}{t}}$, where $t=\frac{2w-d+1}{2}$. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of R\"odl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about $A_q(n,w,d)$ for $q\ge 3$. A similar result is proved for the maximum size of CCCs. We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-R\"odl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcour-Postle, and Glock-Joos-Kim-K\"uhn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations. We also present several intriguing open questions for future research.

Comparisons of frequency distributions often invoke the concept of shift to describe directional changes in properties such as the mean. In the present study, we sought to define shift as a property in and of itself. Specifically, we define distributional shift (DS) as the concentration of frequencies away from the discrete class having the greatest value (e.g., the right-most bin of a histogram). We derive a measure of DS using the normalized sum of exponentiated cumulative frequencies. We then define relative distributional shift (RDS) as the difference in DS between two distributions, revealing the magnitude and direction by which one distribution is concentrated to lesser or greater discrete classes relative to another. We find that RDS is highly related to popular measures that, while based on the comparison of frequency distributions, do not explicitly consider shift. While RDS provides a useful complement to other comparative measures, DS allows shift to be quantified as a property of individual distributions, similar in concept to a statistical moment.

We generalize the Poisson limit theorem to binary functions of random objects whose law is invariant under the action of an amenable group. Examples include stationary random fields, exchangeable sequences, and exchangeable graphs. A celebrated result of E. Lindenstrauss shows that normalized sums over certain increasing subsets of such groups approximate expectations. Our results clarify that the corresponding unnormalized sums of binary statistics are asymptotically Poisson, provided suitable mixing conditions hold. They extend further to randomly subsampled sums and also show that strict invariance of the distribution is not needed if the requisite mixing condition defined by the group holds. We illustrate the results with applications to random fields, Cayley graphs, and Poisson processes on groups.

We study discretizations of fractional fully nonlinear equations by powers of discrete Laplacians. Our problems are parabolic and of order $\sigma\in(0,2)$ since they involve fractional Laplace operators $(-\Delta)^{\sigma/2}$. They arise e.g.~in control and game theory as dynamic programming equations, and solutions are non-smooth in general and should be interpreted as viscosity solutions. Our approximations are realized as finite-difference quadrature approximations and are 2nd order accurate for all values of $\sigma$. The accuracy of previous approximations depend on $\sigma$ and are worse when $\sigma$ is close to $2$. We show that the schemes are monotone, consistent, $L^\infty$-stable, and convergent using a priori estimates, viscosity solutions theory, and the method of half-relaxed limits. We present several numerical examples.

In recent years, the Adaptive Antoulas-Anderson AAA algorithm has established itself as the method of choice for solving rational approximation problems. Data-driven Model Order Reduction (MOR) of large-scale Linear Time-Invariant (LTI) systems represents one of the many applications in which this algorithm has proven to be successful since it typically generates reduced-order models (ROMs) efficiently and in an automated way. Despite its effectiveness and numerical reliability, the classical AAA algorithm is not guaranteed to return a ROM that retains the same structural features of the underlying dynamical system, such as the stability of the dynamics. In this paper, we propose a novel algebraic characterization for the stability of ROMs with transfer function obeying the AAA barycentric structure. We use this characterization to formulate a set of convex constraints on the free coefficients of the AAA model that, whenever verified, guarantee by construction the asymptotic stability of the resulting ROM. We suggest how to embed such constraints within the AAA optimization routine, and we validate experimentally the effectiveness of the resulting algorithm, named stabAAA, over a set of relevant MOR applications.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司