亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich structure of parameters contained within their optimization trajectories. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which reveal the inherent nuance and interplay involved between various optimization choices, such as momentum, weight decay, and batch size. We use them to provide key hallmarks about the nature of optimization in deep neural networks: when it goes right, and when it finds itself in a dead end. Further, thanks to our trajectory perspective, we uncover an intertwined behaviour of momentum and weight decay that promotes directional exploration, as well as a directional regularization behaviour of some others. We perform experiments over large-scale vision and language settings, including large language models (LLMs) with up to 12 billion parameters, to demonstrate the value of our approach.

相關內容

Learned sparse models such as SPLADE have successfully shown how to incorporate the benefits of state-of-the-art neural information retrieval models into the classical inverted index data structure. Despite their improvements in effectiveness, learned sparse models are not as efficient as classical sparse model such as BM25. The problem has been investigated and addressed by recently developed strategies, such as guided traversal query processing and static pruning, with different degrees of success on in-domain and out-of-domain datasets. In this work, we propose a new query processing strategy for SPLADE based on a two-step cascade. The first step uses a pruned and reweighted version of the SPLADE sparse vectors, and the second step uses the original SPLADE vectors to re-score a sample of documents retrieved in the first stage. Our extensive experiments, performed on 30 different in-domain and out-of-domain datasets, show that our proposed strategy is able to improve mean and tail response times over the original single-stage SPLADE processing by up to $30\times$ and $40\times$, respectively, for in-domain datasets, and by 12x to 25x, for mean response on out-of-domain datasets, while not incurring in statistical significant difference in 60\% of datasets.

Reconstructing 3D clothed human involves creating a detailed geometry of individuals in clothing, with applications ranging from virtual try-on, movies, to games. To enable practical and widespread applications, recent advances propose to generate a clothed human from an RGB image. However, they struggle to reconstruct detailed and robust avatars simultaneously. We empirically find that the high-frequency (HF) and low-frequency (LF) information from a parametric model has the potential to enhance geometry details and improve robustness to noise, respectively. Based on this, we propose HiLo, namely clothed human reconstruction with high- and low-frequency information, which contains two components. 1) To recover detailed geometry using HF information, we propose a progressive HF Signed Distance Function to enhance the detailed 3D geometry of a clothed human. We analyze that our progressive learning manner alleviates large gradients that hinder model convergence. 2) To achieve robust reconstruction against inaccurate estimation of the parametric model by using LF information, we propose a spatial interaction implicit function. This function effectively exploits the complementary spatial information from a low-resolution voxel grid of the parametric model. Experimental results demonstrate that HiLo outperforms the state-of-the-art methods by 10.43% and 9.54% in terms of Chamfer distance on the Thuman2.0 and CAPE datasets, respectively. Additionally, HiLo demonstrates robustness to noise from the parametric model, challenging poses, and various clothing styles.

The prevalence of digital media and evolving sociopolitical dynamics have significantly amplified the dissemination of hateful content. Existing studies mainly focus on classifying texts into binary categories, often overlooking the continuous spectrum of offensiveness and hatefulness inherent in the text. In this research, we present an extensive benchmark dataset for Amharic, comprising 8,258 tweets annotated for three distinct tasks: category classification, identification of hate targets, and rating offensiveness and hatefulness intensities. Our study highlights that a considerable majority of tweets belong to the less offensive and less hate intensity levels, underscoring the need for early interventions by stakeholders. The prevalence of ethnic and political hatred targets, with significant overlaps in our dataset, emphasizes the complex relationships within Ethiopia's sociopolitical landscape. We build classification and regression models and investigate the efficacy of models in handling these tasks. Our results reveal that hate and offensive speech can not be addressed by a simplistic binary classification, instead manifesting as variables across a continuous range of values. The Afro-XLMR-large model exhibits the best performances achieving F1-scores of 75.30%, 70.59%, and 29.42% for the category, target, and regression tasks, respectively. The 80.22% correlation coefficient of the Afro-XLMR-large model indicates strong alignments.

User quality of experience in the context of Web browsing is being researched widely, with plenty of developments occurring alongside technological advances, not seldom driven by big industry players. With the huge reach and infrastructure of Google, the Chrome User Experience Report (CrUX) provides quantitative real-life measurement data of a vast magnitude. Analysis of this steadily expanding dataset aggregating different user experience metrics, yields tangible insights into actual trends and developments. Hence, this paper is the first to study the CrUX dataset from the viewpoint of relevant metrics by quantitative evaluation of users Web browsing experience across three device types and nine European countries. Analysis of data segmented by connection type in the device dimension shows desktops outperforming other device types for all metrics. Similar analysis in the country dimension, shows North European countries (Sweden, Finland) having maximum 4G connections (85.99%, 81.41% respectively) and steadily performing 25%-36% better at the 75th percentile across all metrics compared to the worst performing country. Such a high-level longitudinal analysis of real-life Web browsing experience provides an extensive base for future research.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司