Comparative analysis of scalar fields is an important problem with various applications including feature-directed visualization and feature tracking in time-varying data. Comparing topological structures that are abstract and succinct representations of the scalar fields lead to faster and meaningful comparison. While there are many distance or similarity measures to compare topological structures in a global context, there are no known measures for comparing topological structures locally. While the global measures have many applications, they do not directly lend themselves to fine-grained analysis across multiple scales. We define a local variant of the tree edit distance and apply it towards local comparative analysis of merge trees with support for finer analysis. We also present experimental results on time-varying scalar fields, 3D cryo-electron microscopy data, and other synthetic data sets to show the utility of this approach in applications like symmetry detection and feature tracking.
We introduce CharacterGAN, a generative model that can be trained on only a few samples (8 - 15) of a given character. Our model generates novel poses based on keypoint locations, which can be modified in real time while providing interactive feedback, allowing for intuitive reposing and animation. Since we only have very limited training samples, one of the key challenges lies in how to address (dis)occlusions, e.g. when a hand moves behind or in front of a body. To address this, we introduce a novel layering approach which explicitly splits the input keypoints into different layers which are processed independently. These layers represent different parts of the character and provide a strong implicit bias that helps to obtain realistic results even with strong (dis)occlusions. To combine the features of individual layers we use an adaptive scaling approach conditioned on all keypoints. Finally, we introduce a mask connectivity constraint to reduce distortion artifacts that occur with extreme out-of-distribution poses at test time. We show that our approach outperforms recent baselines and creates realistic animations for diverse characters. We also show that our model can handle discrete state changes, for example a profile facing left or right, that the different layers do indeed learn features specific for the respective keypoints in those layers, and that our model scales to larger datasets when more data is available.
This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants without motor impairments using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.
We study the parameterized complexity of various classic vertex-deletion problems such as Odd cycle transversal, Vertex planarization, and Chordal vertex deletion under hybrid parameterizations. Existing FPT algorithms for these problems either focus on the parameterization by solution size, detecting solutions of size $k$ in time $f(k) \cdot n^{O(1)}$, or width parameterizations, finding arbitrarily large optimal solutions in time $f(w) \cdot n^{O(1)}$ for some width measure $w$ like treewidth. We unify these lines of research by presenting FPT algorithms for parameterizations that can simultaneously be arbitrarily much smaller than the solution size and the treewidth. We consider two classes of parameterizations which are relaxations of either treedepth of treewidth. They are related to graph decompositions in which subgraphs that belong to a target class H (e.g., bipartite or planar) are considered simple. First, we present a framework for computing approximately optimal decompositions for miscellaneous classes H. Namely, if the cost of an optimal decomposition is $k$, we show how to find a decomposition of cost $k^{O(1)}$ in time $f(k) \cdot n^{O(1)}$. This is applicable to any graph class H for which the corresponding vertex-deletion problem admits a constant-factor approximation algorithm or an FPT algorithm paramaterized by the solution size. Secondly, we exploit the constructed decompositions for solving vertex-deletion problems by extending ideas from algorithms using iterative compression and the finite state property. For the three mentioned vertex-deletion problems, and all problems which can be formulated as hitting a finite set of connected forbidden (a) minors or (b) (induced) subgraphs, we obtain FPT algorithms with respect to both studied parameterizations.
Local explainability methods -- those which seek to generate an explanation for each prediction -- are becoming increasingly prevalent due to the need for practitioners to rationalize their model outputs. However, comparing local explainability methods is difficult since they each generate outputs in various scales and dimensions. Furthermore, due to the stochastic nature of some explainability methods, it is possible for different runs of a method to produce contradictory explanations for a given observation. In this paper, we propose a topology-based framework to extract a simplified representation from a set of local explanations. We do so by first modeling the relationship between the explanation space and the model predictions as a scalar function. Then, we compute the topological skeleton of this function. This topological skeleton acts as a signature for such functions, which we use to compare different explanation methods. We demonstrate that our framework can not only reliably identify differences between explainability techniques but also provides stable representations. Then, we show how our framework can be used to identify appropriate parameters for local explainability methods. Our framework is simple, does not require complex optimizations, and can be broadly applied to most local explanation methods. We believe the practicality and versatility of our approach will help promote topology-based approaches as a tool for understanding and comparing explanation methods.
For a graph class ${\cal H}$, the graph parameters elimination distance to ${\cal H}$ (denoted by ${\bf ed}_{\cal H}$) [Bulian and Dawar, Algorithmica, 2016], and ${\cal H}$-treewidth (denoted by ${\bf tw}_{\cal H}$) [Eiben et al. JCSS, 2021] aim to minimize the treedepth and treewidth, respectively, of the "torso" of the graph induced on a modulator to the graph class ${\cal H}$. Here, the torso of a vertex set $S$ in a graph $G$ is the graph with vertex set $S$ and an edge between two vertices $u, v \in S$ if there is a path between $u$ and $v$ in $G$ whose internal vertices all lie outside $S$. In this paper, we show that from the perspective of (non-uniform) fixed-parameter tractability (FPT), the three parameters described above give equally powerful parameterizations for every hereditary graph class ${\cal H}$ that satisfies mild additional conditions. In fact, we show that for every hereditary graph class ${\cal H}$ satisfying mild additional conditions, with the exception of ${\bf tw}_{\cal H}$ parameterized by ${\bf ed}_{\cal H}$, for every pair of these parameters, computing one parameterized by itself or any of the others is FPT-equivalent to the standard vertex-deletion (to ${\cal H}$) problem. As an example, we prove that an FPT algorithm for the vertex-deletion problem implies a non-uniform FPT algorithm for computing ${\bf ed}_{\cal H}$ and ${\bf tw}_{\cal H}$. The conclusions of non-uniform FPT algorithms being somewhat unsatisfactory, we essentially prove that if ${\cal H}$ is hereditary, union-closed, CMSO-definable, and (a) the canonical equivalence relation (or any refinement thereof) for membership in the class can be efficiently computed, or (b) the class admits a "strong irrelevant vertex rule", then there exists a uniform FPT algorithm for ${\bf ed}_{\cal H}$.
We introduce a new method for Estimation of Signal Parameters based on Iterative Rational Approximation (ESPIRA) for sparse exponential sums. Our algorithm uses the AAA algorithm for rational approximation of the discrete Fourier transform of the given equidistant signal values. We show that ESPIRA can be interpreted as a matrix pencil method applied to Loewner matrices. These Loewner matrices are closely connected with the Hankel matrices which are usually employed for signal recovery. Due to the construction of the Loewner matrices via an adaptive selection of index sets, the matrix pencil method is stabilized. ESPIRA achieves similar recovery results for exact data as ESPRIT and the matrix pencil method but with less computational effort. Moreover, ESPIRA strongly outperforms ESPRIT and the matrix pencil method for noisy data and for signal approximation by short exponential sums.
In this paper, we propose a novel generative adversarial network (GAN) for 3D point clouds generation, which is called tree-GAN. To achieve state-of-the-art performance for multi-class 3D point cloud generation, a tree-structured graph convolution network (TreeGCN) is introduced as a generator for tree-GAN. Because TreeGCN performs graph convolutions within a tree, it can use ancestor information to boost the representation power for features. To evaluate GANs for 3D point clouds accurately, we develop a novel evaluation metric called Frechet point cloud distance (FPD). Experimental results demonstrate that the proposed tree-GAN outperforms state-of-the-art GANs in terms of both conventional metrics and FPD, and can generate point clouds for different semantic parts without prior knowledge.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Sentiment analysis is proven to be very useful tool in many applications regarding social media. This has led to a great surge of research in this field. Hence, in this paper, we compile the baselines for such research. In this paper, we explore three different deep-learning based architectures for multimodal sentiment classification, each improving upon the previous. Further, we evaluate these architectures with multiple datasets with fixed train/test partition. We also discuss some major issues, frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-exclusive models, importance of different modalities, and generalizability. This framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field. We draw a comparison among the methods using empirical data, obtained from the experiments. In the future, we plan to focus on extracting semantics from visual features, cross-modal features and fusion.
Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.