For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ L^p $-regularity estimate is established, and a sharp error estimate in the norm $ \|\cdot\|_{L^p((0,T)\times\Omega;L^q(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.
Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.
In this article, an efficient numerical method for computing finite-horizon controllability Gramians in Cholesky-factored form is proposed. The method is applicable to general dense matrices of moderate size and produces a Cholesky factor of the Gramian without computing the full product. In contrast to other methods applicable to this task, the proposed method is a generalization of the scaling-and-squaring approach for approximating the matrix exponential. It exploits a similar doubling formula for the Gramian, and thereby keeps the required computational effort modest. Most importantly, a rigorous backward error analysis is provided, which guarantees that the approximation is accurate to the round-off error level in double precision. This accuracy is illustrated in practice on a large number of standard test examples. The method has been implemented in the Julia package FiniteHorizonGramians.jl, which is available online under the MIT license. Code for reproducing the experimental results is included in this package, as well as code for determining the optimal method parameters. The analysis can thus easily be adapted to a different finite-precision arithmetic.
A numerical method is proposed for simulation of composite open quantum systems. It is based on Lindblad master equations and adiabatic elimination. Each subsystem is assumed to converge exponentially towards a stationary subspace, slightly impacted by some decoherence channels and weakly coupled to the other subsystems. This numerical method is based on a perturbation analysis with an asymptotic expansion. It exploits the formulation of the slow dynamics with reduced dimension. It relies on the invariant operators of the local and nominal dissipative dynamics attached to each subsystem. Second-order expansion can be computed only with local numerical calculations. It avoids computations on the tensor-product Hilbert space attached to the full system. This numerical method is particularly well suited for autonomous quantum error correction schemes. Simulations of such reduced models agree with complete full model simulations for typical gates acting on one and two cat-qubits (Z, ZZ and CNOT) when the mean photon number of each cat-qubit is less than 8. For larger mean photon numbers and gates with three cat-qubits (ZZZ and CCNOT), full model simulations are almost impossible whereas reduced model simulations remain accessible. In particular, they capture both the dominant phase-flip error-rate and the very small bit-flip error-rate with its exponential suppression versus the mean photon number.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
Austrin showed that the approximation ratio $\beta\approx 0.94016567$ obtained by the MAX 2-SAT approximation algorithm of Lewin, Livnat and Zwick (LLZ) is optimal modulo the Unique Games Conjecture (UGC) and modulo a Simplicity Conjecture that states that the worst performance of the algorithm is obtained on so called simple configurations. We prove Austrin's conjecture, thereby showing the optimality of the LLZ approximation algorithm, relying only on the Unique Games Conjecture. Our proof uses a combination of analytic and computational tools. We also present new approximation algorithms for two restrictions of the MAX 2-SAT problem. For MAX HORN-$\{1,2\}$-SAT, i.e., MAX CSP$(\{x\lor y,\bar{x}\lor y,x,\bar{x}\})$, in which clauses are not allowed to contain two negated literals, we obtain an approximation ratio of $0.94615981$. For MAX CSP$(\{x\lor y,x,\bar{x}\})$, i.e., when 2-clauses are not allowed to contain negated literals, we obtain an approximation ratio of $0.95397990$. By adapting Austrin's and our arguments for the MAX 2-SAT problem we show that these two approximation ratios are also tight, modulo only the UGC conjecture. This completes a full characterization of the approximability of the MAX 2-SAT problem and its restrictions.
Twitter bots are a controversial element of the platform, and their negative impact is well known. In the field of scientific communication, they have been perceived in a more positive light, and the accounts that serve as feeds alerting about scientific publications are quite common. However, despite being aware of the presence of bots in the dissemination of science, no large-scale estimations have been made nor has it been evaluated if they can truly interfere with altmetrics. Analyzing a dataset of 3,744,231 papers published between 2017 and 2021 and their associated 51,230,936 Twitter mentions, our goal was to determine the volume of publications mentioned by bots and whether they skew altmetrics indicators. Using the BotometerLite API, we categorized Twitter accounts based on their likelihood of being bots. The results showed that 11,073 accounts (0.23% of total users) exhibited automated behavior, contributing to 4.72% of all mentions. A significant bias was observed in the activity of bots. Their presence was particularly pronounced in disciplines such as Mathematics, Physics, and Space Sciences, with some specialties even exceeding 70% of the tweets. However, these are extreme cases, and the impact of this activity on altmetrics varies by speciality, with minimal influence in Arts & Humanities and Social Sciences. This research emphasizes the importance of distinguishing between specialties and disciplines when using Twitter as an altmetric.
The equioscillation theorem interleaves the Haar condition, the existence and uniqueness and strong uniqueness of the optimal Chebyshev approximation and its characterization by the equioscillation condition in a way that cannot extend to multivariate approximation: Rice~[\emph{Transaction of the AMS}, 1963] says ''A form of alternation is still present for functions of several variables. However, there is apparently no simple method of distinguishing between the alternation of a best approximation and the alternation of other approximating functions. This is due to the fact that there is no natural ordering of the critical points.'' In addition, in the context of multivariate approximation the Haar condition is typically not satisfied and strong uniqueness may hold or not. The present paper proposes an multivariate equioscillation theorem, which includes such a simple alternation condition on error extrema, existence and a sufficient condition for strong uniqueness. To this end, the relationship between the properties interleaved in the univariate equioscillation theorem is clarified: first, a weak Haar condition is proposed, which simply implies existence. Second, the equioscillation condition is shown to be equivalent to the optimality condition of convex optimization, hence characterizing optimality independently from uniqueness. It is reformulated as the synchronized oscillations between the error extrema and the components of a related Haar matrix kernel vector, in a way that applies to multivariate approximation. Third, an additional requirement on the involved Haar matrix and its kernel vector, called strong equioscillation, is proved to be sufficient for the strong uniqueness of the solution. These three disconnected conditions give rise to a multivariate equioscillation theorem, where existence, characterization by equioscillation and strong uniqueness are separated, without involving the too restrictive Haar condition. Remarkably, relying on optimality condition of convex optimization gives rise to a quite simple proof. Instances of multivariate problems with strongly unique, non-strong but unique and non-unique solutions are presented to illustrate the scope of the theorem.
In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.
Information geometry of Markov chains has been studied by Nagaoka, Takeuchi and others using the dually flat structure of the space of transition probabilities. In this context, a submanifold of the space is called a Markov model. In the present paper, we seek for a theory of extended spaces of Markov models in the following sense. As a prototype, for the space of probability distributions on a finite set, Amari has introduced the space of positive measures simply by removing the constraint condition that the total mass is equal to $1$ and investigated the extended space by finding the Bregman and $F$-divergence suitably. According to this line, we introduce an extension of the space of transition probabilities equipped with suitable $F$-divergence for a given Markov chain. We regard it as the space of positive transition measures on a Markov chain, and study the dually flat structure on the space. That provides a new insight on the geometry of Markov chains. We also discuss a relation with other existing work.
Covariance matrices of random vectors contain information that is crucial for modelling. Certain structures and patterns of the covariances (or correlations) may be used to justify parametric models, e.g., autoregressive models. Until now, there have been only few approaches for testing such covariance structures systematically and in a unified way. In the present paper, we propose such a unified testing procedure, and we will exemplify the approach with a large variety of covariance structure models. This includes common structures such as diagonal matrices, Toeplitz matrices, and compound symmetry but also the more involved autoregressive matrices. We propose hypothesis tests for these structures, and we use bootstrap techniques for better small-sample approximation. The structures of the proposed tests invite for adaptations to other covariance patterns by choosing the hypothesis matrix appropriately. We prove their correctness for large sample sizes. The proposed methods require only weak assumptions. With the help of a simulation study, we assess the small sample properties of the tests. We also analyze a real data set to illustrate the application of the procedure.