亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Covariance matrices of random vectors contain information that is crucial for modelling. Certain structures and patterns of the covariances (or correlations) may be used to justify parametric models, e.g., autoregressive models. Until now, there have been only few approaches for testing such covariance structures systematically and in a unified way. In the present paper, we propose such a unified testing procedure, and we will exemplify the approach with a large variety of covariance structure models. This includes common structures such as diagonal matrices, Toeplitz matrices, and compound symmetry but also the more involved autoregressive matrices. We propose hypothesis tests for these structures, and we use bootstrap techniques for better small-sample approximation. The structures of the proposed tests invite for adaptations to other covariance patterns by choosing the hypothesis matrix appropriately. We prove their correctness for large sample sizes. The proposed methods require only weak assumptions. With the help of a simulation study, we assess the small sample properties of the tests. We also analyze a real data set to illustrate the application of the procedure.

相關內容

Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poster children for personalized, data-driven healthcare. We show however, that using prediction models for decision making can lead to harmful decisions, even when the predictions exhibit good discrimination after deployment. These models are harmful self-fulfilling prophecies: their deployment harms a group of patients but the worse outcome of these patients does not invalidate the predictive power of the model. Our main result is a formal characterization of a set of such prediction models. Next we show that models that are well calibrated before and after deployment are useless for decision making as they made no change in the data distribution. These results point to the need to revise standard practices for validation, deployment and evaluation of prediction models that are used in medical decisions.

While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.

The incompressibility method is a counting argument in the framework of algorithmic complexity that permits discovering properties that are satisfied by most objects of a class. This paper gives a preliminary insight into Kolmogorov's complexity of groupoids and some algebras. The incompressibility method shows that almost all the groupoids are asymmetric and simple: Only trivial or constant homomorphisms are possible. However, highly random groupoids allow subgroupoids with interesting restrictions that reveal intrinsic structural properties. We also study the issue of the algebraic varieties and wonder which equational identities allow randomness.

Multistate Markov models are a canonical parametric approach for data modeling of observed or latent stochastic processes supported on a finite state space. Continuous-time Markov processes describe data that are observed irregularly over time, as is often the case in longitudinal medical data, for example. Assuming that a continuous-time Markov process is time-homogeneous, a closed-form likelihood function can be derived from the Kolmogorov forward equations -- a system of differential equations with a well-known matrix-exponential solution. Unfortunately, however, the forward equations do not admit an analytical solution for continuous-time, time-inhomogeneous Markov processes, and so researchers and practitioners often make the simplifying assumption that the process is piecewise time-homogeneous. In this paper, we provide intuitions and illustrations of the potential biases for parameter estimation that may ensue in the more realistic scenario that the piecewise-homogeneous assumption is violated, and we advocate for a solution for likelihood computation in a truly time-inhomogeneous fashion. Particular focus is afforded to the context of multistate Markov models that allow for state label misclassifications, which applies more broadly to hidden Markov models (HMMs), and Bayesian computations bypass the necessity for computationally demanding numerical gradient approximations for obtaining maximum likelihood estimates (MLEs). Supplemental materials are available online.

We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.

We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action, and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one based on the Magnus expansion, whereas the second is based on Runge-Kutta-Munthe-Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with nongeometric numerical methods.

We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

We prove a far-reaching strengthening of Szemer\'edi's regularity lemma for intersection graphs of pseudo-segments. It shows that the vertex set of such a graph can be partitioned into a bounded number of parts of roughly the same size such that almost all bipartite graphs between different pairs of parts are complete or empty. We use this to get an improved bound on disjoint edges in simple topological graphs, showing that every $n$-vertex simple topological graph with no $k$ pairwise disjoint edges has at most $n(\log n)^{O(\log k)}$ edges.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.

北京阿比特科技有限公司