亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the circuits which take a matrix input are unchanged by a permutation applied simultaneously to the rows and columns of the matrix. Under such restrictions we have polynomial-size circuits for computing the determinant but no subexponential size circuits for the permanent. Here, we consider a more stringent symmetry requirement, namely that the circuits are unchanged by arbitrary even permutations applied separately to rows and columns, and prove an exponential lower bound even for circuits computing the determinant. The result requires substantial new machinery. We develop a general framework for proving lower bounds for symmetric circuits with restricted symmetries, based on a new support theorem and new two-player restricted bijection games. These are applied to the determinant problem with a novel construction of matrices that are bi-adjacency matrices of graphs based on the CFI construction. Our general framework opens the way to exploring a variety of symmetry restrictions and studying trade-offs between symmetry and other resources used by arithmetic circuits.

相關內容

第47屆自動化、語言和編程國際學術討論會(ICALP 2020)是歐洲理論計算機科學的主要會議和歐洲理論計算機科學協會(EATCS)年會,將于2020年7月8日至12日在中國北京舉行。ICARP 2020將有兩個傳統的軌道A(算法、復雜度和游戲)和B(自動機、邏輯、語義和編程理論)。官網鏈接: · Conformer · 泛函 · 離散化 · 評論員 ·
2021 年 9 月 27 日

We study Dual-Primal Isogeometric Tearing and Interconnecting (IETI-DP) solvers for non-conforming multi-patch discretizations of a generalized Poisson problem. We realize the coupling between the patches using a symmetric interior penalty discontinuous Galerkin (SIPG) approach. Previously, we have assumed that the interfaces between patches always consist of whole edges. In this paper, we drop this requirement and allow T-junctions. This extension is vital for the consideration of sliding interfaces, for example between the rotor and the stator of an electrical motor. One critical part for the handling of T-junctions in IETI-DP solvers is the choice of the primal degrees of freedom. We propose to add all basis functions that are non-zero at any of the vertices to the primal space. Since there are several such basis functions at any T-junction, we call this concept ''fat vertices''. For this choice, we show a condition number bound that coincides with the bound for the conforming cas

In this work, we study a global quadrature scheme for analytic functions on compact intervals based on function values on arbitrary grids of quadrature nodes. In practice it is not always possible to sample functions at optimal nodes with a low-order Lebesgue constant. Therefore, we go beyond classical interpolatory quadrature by lowering the degree of the polynomial approximant and by applying auxiliary mapping functions that map the original quadrature nodes to more suitable fake nodes. More precisely, we investigate the combination of the Kosloff Tal-Ezer map and Least-squares approximation (KTL) for numerical quadrature: a careful selection of the mapping parameter $\alpha$ ensures a high accuracy of the approximation and, at the same time, an asymptotically optimal ratio between the degree of the polynomial and the spacing of the grid. We will investigate the properties of this KTL quadrature and focus on the symmetry of the quadrature weights, the limit relations for $\alpha$ converging to $0^{+}$ and $1^{-}$, as well as the computation of the quadrature weights in the standard monomial and in the Chebyshev bases with help of a cosine transform. Numerical tests on equispaced nodes show that some static choices of the map's parameter improve the results of the composite trapezoidal rule, while a dynamic approach achieves larger stability and faster convergence, even when the sampling nodes are perturbed. From a computational point of view the proposed method is practical and can be implemented in a simple and efficient way.

We introduce the multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficient $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\boldsymbol{y}) = \sum_{j\ge1} y_j\,\phi_j$ with $y_j\sim\mathcal{N}(0,1)$ and a given sequence of functions $\{\phi_j\}_{j\ge1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the multivariate decomposition method (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using quasi-Monte Carlo (QMC) methods, and for which we use the finite element method (FEM) to solve different instances of the PDE. We develop higher-order quasi-Monte Carlo rules for integration over the finite-dimensional Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of anchored Gaussian Sobolev spaces, taking into account the truncation error. Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-d'/\lambda}) = O(\epsilon^{-(p^*+d'/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-d'/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $d' = d \, (1+\delta')$ for some $\delta' \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2+d'/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j\ge1}$.

The singularities of serial robotic manipulators are those configurations in which the robot loses the ability to move in at least one direction. Hence, their identification is fundamental to enhance the performance of current control and motion planning strategies. While classical approaches entail the computation of the determinant of either a 6x n or nxn matrix for an n degrees of freedom serial robot, this work addresses a novel singularity identification method based on modelling the twists defined by the joint axes of the robot as vectors of the six-dimensional and three-dimensional geometric algebras. In particular, it consists of identifying which configurations cause the exterior product of these twists to vanish. In addition, since rotors represent rotations in geometric algebra, once these singularities have been identified, a distance function is defined in the configuration space C such that its restriction to the set of singular configurations S allows us to compute the distance of any configuration to a given singularity. This distance function is used to enhance how the singularities are handled in three different scenarios, namely motion planning, motion control and bilateral teleoperation.

We establish a classical heuristic algorithm for exactly computing quantum probability amplitudes. Our algorithm is based on mapping output probability amplitudes of quantum circuits to evaluations of the Tutte polynomial of graphic matroids. The algorithm evaluates the Tutte polynomial recursively using the deletion-contraction property while attempting to exploit structural properties of the matroid. We consider several variations of our algorithm and present experimental results comparing their performance on two classes of random quantum circuits. Further, we obtain an explicit form for Clifford circuit amplitudes in terms of matroid invariants and an alternative efficient classical algorithm for computing the output probability amplitudes of Clifford circuits.

The error threshold of a one-parameter family of quantum channels is defined as the largest noise level such that the quantum capacity of the channel remains positive. This in turn guarantees the existence of a quantum error correction code for noise modeled by that channel. Discretizing the single-qubit errors leads to the important family of Pauli quantum channels; curiously, multipartite entangled states can increase the threshold of these channels beyond the so-called hashing bound, an effect termed superadditivity of coherent information. In this work, we divide the simplex of Pauli channels into one-parameter families and compute numerical lower bounds on their error thresholds. We find substantial increases of error thresholds relative to the hashing bound for large regions in the Pauli simplex corresponding to biased noise, which is a realistic noise model in promising quantum computing architectures. The error thresholds are computed on the family of graph states, a special type of stabilizer state. In order to determine the coherent information of a graph state, we devise an algorithm that exploits the symmetries of the underlying graph, resulting in a substantial computational speed-up. This algorithm uses tools from computational group theory and allows us to consider symmetric graph states on a large number of vertices. Our algorithm works particularly well for repetition codes and concatenated repetition codes (or cat codes), for which our results provide the first comprehensive study of superadditivity for arbitrary Pauli channels. In addition, we identify a novel family of quantum codes based on tree graphs. The error thresholds of these tree graph states outperform repetition and cat codes in large regions of the Pauli simplex, and hence form a new code family with desirable error correction properties.

In this work, we propose a reduced basis method for efficient solution of parametric linear systems. The coefficient matrix is assumed to be a linear matrix-valued function that is symmetric and positive definite for admissible values of the parameter $\mathbf{\sigma}\in \mathbb{R}^s$. We propose a solution strategy where one first computes a basis for the appropriate compound Krylov subspace and then uses this basis to compute a subspace solution for multiple $\mathbf{\sigma}$. Three kinds of compound Krylov subspaces are discussed. Error estimate is given for the subspace solution from each of these spaces. Theoretical results are demonstrated by numerical examples related to solving parameter dependent elliptic PDEs using the finite element method (FEM).

We obtain explicit $p$-Wasserstein distance error bounds between the distribution of the multi-parameter MLE and the multivariate normal distribution. Our general bounds are given for possibly high-dimensional, independent and identically distributed random vectors. Our general bounds are of the optimal $\mathcal{O}(n^{-1/2})$ order. Explicit numerical constants are given when $p\in(1,2]$, and in the case $p>2$ the bounds are explicit up to a constant factor that only depends on $p$. We apply our general bounds to derive Wasserstein distance error bounds for the multivariate normal approximation of the MLE in several settings; these being single-parameter exponential families, the normal distribution under canonical parametrisation, and the multivariate normal distribution under non-canonical parametrisation. In addition, we provide upper bounds with respect to the bounded Wasserstein distance when the MLE is implicitly defined.

We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high dimensional vectors under sparsity restrictions. In this regard, our main contribution is the development of a loss function, based on which, one can operationalize a one-step bias-correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.

We prove tight H\"olderian error bounds for all $p$-cones. Surprisingly, the exponents differ in several ways from those that have been previously conjectured; moreover, they illuminate $p$-cones as a curious example of a class of objects that possess properties in 3 dimensions that they do not in 4 or more. Using our error bounds, we analyse least squares problems with $p$-norm regularization, where our results enable us to compute the corresponding KL exponents for previously inaccessible values of $p$. Another application is a (relatively) simple proof that most $p$-cones are neither self-dual nor homogeneous. Our error bounds are obtained under the framework of facial residual functions and we expand it by establishing for general cones an optimality criterion under which the resulting error bound must be tight.

北京阿比特科技有限公司