Healthcare in Africa is a complex issue influenced by many factors including poverty, lack of infrastructure, and inadequate funding. However, Artificial intelligence (AI) applied to healthcare, has the potential to transform healthcare in Africa by improving the accuracy and efficiency of diagnosis, enabling earlier detection of diseases, and supporting the delivery of personalized medicine. This paper reviews the current state of how AI Algorithms can be used to improve diagnostics, treatment, and disease monitoring, as well as how AI can be used to improve access to healthcare in Africa as a low-resource setting and discusses some of the critical challenges and opportunities for its adoption. As such, there is a need for a well-coordinated effort by the governments, private sector, healthcare providers, and international organizations to create sustainable AI solutions that meet the unique needs of the African healthcare system.
This research paper presents a meta-analysis of the multifaceted role of technology in mental health. The pervasive influence of technology on daily lives necessitates a deep understanding of its impact on mental health services. This study synthesizes literature covering Behavioral Intervention Technologies (BITs), digital mental health interventions during COVID-19, young men's attitudes toward mental health technologies, technology-based interventions for university students, and the applicability of mobile health technologies for individuals with serious mental illnesses. BITs are recognized for their potential to provide evidence-based interventions for mental health conditions, especially anxiety disorders. The COVID-19 pandemic acted as a catalyst for the adoption of digital mental health services, underscoring their crucial role in providing accessible and quality care; however, their efficacy needs to be reinforced by workforce training, high-quality evidence, and digital equity. A nuanced understanding of young men's attitudes toward mental health is imperative for devising effective online services. Technology-based interventions for university students are promising, although variable in effectiveness; their deployment must be evidence-based and tailored to individual needs. Mobile health technologies, particularly activity tracking, hold promise for individuals with serious mental illnesses. Collectively, technology has immense potential to revolutionize mental health care. However, the implementation must be evidence-based, ethical, and equitable, with continued research focusing on experiences across diverse populations, ensuring accessibility and efficacy for all.
Within the field of Requirements Engineering (RE), the increasing significance of Explainable Artificial Intelligence (XAI) in aligning AI-supported systems with user needs, societal expectations, and regulatory standards has garnered recognition. In general, explainability has emerged as an important non-functional requirement that impacts system quality. However, the supposed trade-off between explainability and performance challenges the presumed positive influence of explainability. If meeting the requirement of explainability entails a reduction in system performance, then careful consideration must be given to which of these quality aspects takes precedence and how to compromise between them. In this paper, we critically examine the alleged trade-off. We argue that it is best approached in a nuanced way that incorporates resource availability, domain characteristics, and considerations of risk. By providing a foundation for future research and best practices, this work aims to advance the field of RE for AI.
Detection of easily missed hidden patterns with fast processing power makes machine learning (ML) indispensable to today's healthcare system. Though many ML applications have already been discovered and many are still under investigation, only a few have been adopted by current healthcare systems. As a result, there exists an enormous opportunity in healthcare system for ML but distributed information, scarcity of properly arranged and easily explainable documentation in related sector are major impede which are making ML applications difficult to healthcare professionals. This study aimed to gather ML applications in different areas of healthcare concisely and more effectively so that necessary information can be accessed immediately with relevant references. We divided our study into five major groups: community level work, risk management/ preventive care, healthcare operation management, remote care, and early detection. Dividing these groups into subgroups, we provided relevant references with description in tabular form for quick access. Our objective is to inform people about ML applicability in healthcare industry, reduce the knowledge gap of clinicians about the ML applications and motivate healthcare professionals towards more machine learning based healthcare system.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
In practically every industry today, artificial intelligence is one of the most effective ways for machines to assist humans. Since its inception, a large number of researchers throughout the globe have been pioneering the application of artificial intelligence in medicine. Although artificial intelligence may seem to be a 21st-century concept, Alan Turing pioneered the first foundation concept in the 1940s. Artificial intelligence in medicine has a huge variety of applications that researchers are continually exploring. The tremendous increase in computer and human resources has hastened progress in the 21st century, and it will continue to do so for many years to come. This review of the literature will highlight the emerging field of artificial intelligence in medicine and its current level of development.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.
Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.