亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Massive random access plays a central role in supporting the Internet of Things (IoT), where a subset of a large population of users simultaneously transmit small packets to a central base station. While there has been much research on the design of protocols for massive access in the uplink, the problem of providing message acknowledgments back to the users has been somewhat neglected. Reliable communication needs to rely on two-way communication for acknowledgement and retransmission. Nevertheless, because of the many possible subsets of active users, providing acknowledgments requires a significant amount of bits. Motivated by this, we define the problem of massive ARQ (Automatic Retransmission reQuest) protocol and introduce efficient methods for joint encoding of multiple acknowledgements in the downlink. The key idea towards reducing the number of bits used for massive acknowledgements is to allow for a small fraction of false positive acknowledgments. We analyze the implications of this approach and the impact of acknowledgment errors in scenarios with massive random access. Finally, we show that these savings can lead to a significant increase in the reliability when retransmissions are allowed since it allows the acknowledgment message to be transmitted more reliably using a much lower rate.

相關內容

Due to its communication efficiency and privacy-preserving capability, federated learning (FL) has emerged as a promising framework for machine learning in 5G-and-beyond wireless networks. Of great interest is the design and optimization of new wireless network structures that support the stable and fast operation of FL. Cell-free massive multiple-input multiple-output (CFmMIMO) turns out to be a suitable candidate, which allows each communication round in the iterative FL process to be stably executed within a large-scale coherence time. Aiming to reduce the total execution time of the FL process in CFmMIMO, this paper proposes choosing only a subset of available users to participate in FL. An optimal selection of users with favorable link conditions would minimize the execution time of each communication round, while limiting the total number of communication rounds required. Toward this end, we formulate a joint optimization problem of user selection, transmit power, and processing frequency, subject to a predefined minimum number of participating users to guarantee the quality of learning. We then develop a new algorithm that is proven to converge to the neighbourhood of the stationary points of the formulated problem. Numerical results confirm that our proposed approach significantly reduces the FL total execution time over baseline schemes. The time reduction is more pronounced when the density of access point deployments is moderately low.

As data generation increasingly takes place on devices without a wired connection, machine learning (ML) related traffic will be ubiquitous in wireless networks. Many studies have shown that traditional wireless protocols are highly inefficient or unsustainable to support ML, which creates the need for new wireless communication methods. In this survey, we give an exhaustive review of the state-of-the-art wireless methods that are specifically designed to support ML services over distributed datasets. Currently, there are two clear themes within the literature, analog over-the-air computation and digital radio resource management optimized for ML. This survey gives a comprehensive introduction to these methods, reviews the most important works, highlights open problems, and discusses application scenarios.

We present a systematic refactoring of the conventional treatment of privacy analyses, basing it on mathematical concepts from the framework of Quantitative Information Flow (QIF). The approach we suggest brings three principal advantages: it is flexible, allowing for precise quantification and comparison of privacy risks for attacks both known and novel; it can be computationally tractable for very large, longitudinal datasets; and its results are explainable both to politicians and to the general public. We apply our approach to a very large case study: the Educational Censuses of Brazil, curated by the governmental agency INEP, which comprise over 90 attributes of approximately 50 million individuals released longitudinally every year since 2007. These datasets have only very recently (2018-2021) attracted legislation to regulate their privacy -- while at the same time continuing to maintain the openness that had been sought in Brazilian society. INEP's reaction to that legislation was the genesis of our project with them. In our conclusions here we share the scientific, technical, and communication lessons we learned in the process.

Rule sets are highly interpretable logical models in which the predicates for decision are expressed in disjunctive normal form (DNF, OR-of-ANDs), or, equivalently, the overall model comprises an unordered collection of if-then decision rules. In this paper, we consider a submodular optimization based approach for learning rule sets. The learning problem is framed as a subset selection task in which a subset of all possible rules needs to be selected to form an accurate and interpretable rule set. We employ an objective function that exhibits submodularity and thus is amenable to submodular optimization techniques. To overcome the difficulty arose from dealing with the exponential-sized ground set of rules, the subproblem of searching a rule is casted as another subset selection task that asks for a subset of features. We show it is possible to write the induced objective function for the subproblem as a difference of two submodular (DS) functions to make it approximately solvable by DS optimization algorithms. Overall, the proposed approach is simple, scalable, and likely to be benefited from further research on submodular optimization. Experiments on real datasets demonstrate the effectiveness of our method.

When reinforcement learning is applied with sparse rewards, agents must spend a prohibitively long time exploring the unknown environment without any learning signal. Abstraction is one approach that provides the agent with an intrinsic reward for transitioning in a latent space. Prior work focuses on dense continuous latent spaces, or requires the user to manually provide the representation. Our approach is the first for automatically learning a discrete abstraction of the underlying environment. Moreover, our method works on arbitrary input spaces, using an end-to-end trainable regularized successor representation model. For transitions between abstract states, we train a set of temporally extended actions in the form of options, i.e., an action abstraction. Our proposed algorithm, Discrete State-Action Abstraction (DSAA), iteratively swaps between training these options and using them to efficiently explore more of the environment to improve the state abstraction. As a result, our model is not only useful for transfer learning but also in the online learning setting. We empirically show that our agent is able to explore the environment and solve provided tasks more efficiently than baseline reinforcement learning algorithms. Our code is publicly available at \url{//github.com/amnonattali/dsaa}.

End-to-End (E2E) network slicing enables wireless networks to provide diverse services on a common infrastructure. Each E2E slice, including resources of radio access network (RAN) and core network, is rented to mobile virtual network operators (MVNOs) to provide a specific service to end-users. RAN slicing, which is realized through wireless network virtualization, involves sharing the frequency spectrum and base station antennas in RAN. Similarly, in core slicing, which is achieved by network function virtualization, data center resources such as commodity servers and physical links are shared between users of different MVNOs. In this paper, we study E2E slicing with the aim of minimizing the total energy consumption. The stated optimization problem is non-convex that is solved by a sub-optimal algorithm proposed here. The simulation results show that our proposed joint power control, server and link allocation (JPSLA) algorithm achieves 30% improvement compared to the disjoint scheme, where RAN and core are sliced separately.

Heart Disease has become one of the most serious diseases that has a significant impact on human life. It has emerged as one of the leading causes of mortality among the people across the globe during the last decade. In order to prevent patients from further damage, an accurate diagnosis of heart disease on time is an essential factor. Recently we have seen the usage of non-invasive medical procedures, such as artificial intelligence-based techniques in the field of medical. Specially machine learning employs several algorithms and techniques that are widely used and are highly useful in accurately diagnosing the heart disease with less amount of time. However, the prediction of heart disease is not an easy task. The increasing size of medical datasets has made it a complicated task for practitioners to understand the complex feature relations and make disease predictions. Accordingly, the aim of this research is to identify the most important risk-factors from a highly dimensional dataset which helps in the accurate classification of heart disease with less complications. For a broader analysis, we have used two heart disease datasets with various medical features. The classification results of the benchmarked models proved that there is a high impact of relevant features on the classification accuracy. Even with a reduced number of features, the performance of the classification models improved significantly with a reduced training time as compared with models trained on full feature set.

This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.

The COVID-19 pandemic has profoundly impacted the world, having taken the lives of over 6 million individuals. Accordingly, this pandemic has caused a shift in conversations surrounding the burden of diseases worldwide, welcoming insights from multidisciplinary fields including digital health and artificial intelligence. Africa faces a heavy disease burden that exacerbates the current COVID-19 pandemic and limits the scope of public health preparedness, response, containment, and case management. Herein, we examined the potential impact of transformative digital health technologies in mitigating the global health crisis with reference to African countries. Furthermore, we proposed recommendations for scaling up digital health technologies and artificial intelligence-based platforms to tackle the transmission of the SARS-CoV-2 and enable equitable vaccine access. Challenges related to the pandemic are numerous. Rapid response and management strategies - that is, contract tracing, case surveillance, diagnostic testing intensity, and most recently vaccine distribution mapping - can overwhelm the health care delivery system that is fragile. Although challenges are vast, digital health technologies can play an essential role in achieving sustainable resilient recovery and building back better. It is plausible that African nations are better equipped to rapidly identify, diagnose, and manage infected individuals for COVID-19, other diseases, future outbreaks, and pandemics.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

北京阿比特科技有限公司