亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

COVID-19 has likely been the most disruptive event at a global scale the world experienced since WWII. Our discipline never experienced such a phenomenon, whereby software engineers were forced to abruptly work from home. Nearly every developer started new working habits and organizational routines, while trying to stay mentally healthy and productive during the lockdowns. We are now starting to realize that some of these new habits and routines may stick with us in the future. Therefore, it is of importance to understand how we have worked from home so far. We investigated whether 15 psychological, social, and situational variables such as quality of social contacts or loneliness predict software engineers' well-being and productivity across a four wave longitudinal study of over 14 months. Additionally, we tested whether there were changes in any of these variables across time. We found that developers' well-being and quality of social contacts improved between April 2020 and July 2021, while their emotional loneliness went down. Other variables, such as productivity and boredom have not changed. We further found that developers' stress measured in May 2020 negatively predicted their well-being 14 months later, even after controlling for many other variables. Finally, comparisons of women and men, as well as between developers residing in the UK and USA, were not statistically different but revealed substantial similarities.

相關內容

The COVID-19 pandemic has placed a severe mental strain on people in general, and on young people in particular. Online support forums offer opportunities for peer-to-peer health support, which can ease pressure on professional and established volunteer services when demand is high. Such forums can also be used to monitor at-risk communities to identify concerns and causes of psychological stress. We created and monitored r/COVID19_support, an online forum for people seeking support during the COVID-19 pandemic, on the platform Reddit. We identify posts made by users self-identifying as students or posting about college/university life, then coded these posts to identify emerging themes that related to triggers of psychological anxiety and distress. 147 posts were made to the forum by 111 unique users during the study period. A number of themes were identified by manual coding, included: feelings of grief associated with the loss of college-related life experiences, such as graduation ceremonies or proms; difficulties with focussing on online and self-guided learning; and fears for the future, in particular of graduating into a constrained job market. The identification of specific issues enabled users to be signposted to information to help them cope with address those particular concerns. Monitoring peer-to-peer forums can help to identify specific issues with which vulnerable groups may require additional support, enabling users to be signposted on to high-quality information to address specific issues.

The COVID-19 pandemic has impacted our society by forcing shutdowns and shifting the way people interacted worldwide. In relation to the impacts on the electric grid, it created a significant decrease in energy demands across the globe. Recent studies have shown that the low load demand conditions caused by COVID-19 lockdowns combined with large renewable generation have resulted in extremely low-inertia grid conditions. In this work, we examine how an attacker could exploit these conditions to cause unsafe grid operating conditions by executing load-altering attacks (LAAs) targeted at compromising hundreds of thousands of IoT-connected high-wattage loads in low-inertia power systems. Our study focuses on analyzing the impact of the COVID-19 mitigation measures on U.S. regional transmission operators (RTOs), formulating a plausible and realistic least-effort LAA targeted at transmission systems with low-inertia conditions, and evaluating the probability of these large-scale LAAs. Theoretical and simulation results are presented based on the WSCC 9-bus test system. Results demonstrate how adversaries could provoke major frequency disturbances by targeting vulnerable load buses in low-inertia systems.

The last decade has witnessed many visual analytics (VA) systems that make successful applications to wide-ranging domains such as urban analytics and explainable AI. However, those systems are often designed, developed, and evaluated on an ad-hoc basis, provoking and spotlighting criticisms about the research rigor and contributions within the visualization community. We come in defence of VA systems by contributing two interview studies with VA researchers to gather critics and replies to those critics. First, we interview 24 researchers about criticisms for VA systems they have received from peers. Through an iterative coding and refinement process, we summarize the interview data into a list of 36 common criticisms. Second, we interview 17 researchers to validate our list and collect replies to those criticisms. We conclude by discussing eight important problems and future research opportunities to advance the theoretical and practical underpinnings of VA systems. We highlight that the presented knowledge is deep, extensive, but also imperfect, provocative, and controversial, and thus recommend reading with an inclusive and critical eye. We hope our work can provide solid foundations and spark discussions to promote the research field forward more rigorously and vibrantly.

Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.

Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt to reduce noise and enhance signals of interest. In this paper, we draw attention to the possibility that denoising methods may introduce bias and lead to incorrect scientific inferences. To present our case, we first review the basic statistical concepts of bias and variance. Denoising techniques typically reduce variance observed across repeated measurements, but this can come at the expense of introducing bias to the average expected outcome. We then conduct three simple simulations that provide concrete examples of how bias may manifest in everyday situations. These simulations reveal several findings that may be surprising and counterintuitive: (i) different methods can be equally effective at reducing variance but some incur bias while others do not, (ii) identifying methods that better recover ground truth does not guarantee the absence of bias, (iii) bias can arise even if one has specific knowledge of properties of the signal of interest. We suggest that researchers should consider and possibly quantify bias before deploying denoising methods on important research data.

In this paper, we use SEIR equations to make predictions for the number of mortality due to COVID-19 in \.Istanbul. Using excess mortality method, we find the number of mortality for the previous three waves in 2020 and 2021. We show that the predictions of our model is consistent with number of moralities for each wave. Furthermore, we predict the number of mortality for the second wave of 2021. We also extend our analysis for Germany, Italy and Turkey to compare the basic reproduction number $R_0$ for Istanbul. Finally, we calculate the number of infected people in Istanbul for herd immunity.

Current models of COVID-19 transmission predict infection from reported or assumed interactions. Here we leverage high-resolution observations of interaction to simulate infectious processes. Ultra-Wide Radio Frequency Identification (RFID) systems were employed to track the real-time physical movements and directional orientation of children and their teachers in 4 preschool classes over a total of 34 observations. An agent-based transmission model combined observed interaction patterns (individual distance and orientation) with CDC-published risk guidelines to estimate the transmission impact of an infected patient zero attending class on the proportion of overall infections, the average transmission rate, and the time lag to the appearance of symptomatic individuals. These metrics highlighted the prophylactic role of decreased classroom density and teacher vaccinations. Reduction of classroom density to half capacity was associated with an 18.2% drop in overall infection proportion while teacher vaccination receipt was associated with a 25.3%drop. Simulation results of classroom transmission dynamics may inform public policy in the face of COVID-19 and similar infectious threats.

The individual data collected throughout patient follow-up constitute crucial information for assessing the risk of a clinical event, and eventually for adapting a therapeutic strategy. Joint models and landmark models have been proposed to compute individual dynamic predictions from repeated measures to one or two markers. However, they hardly extend to the case where the complete patient history includes much more repeated markers possibly. Our objective was thus to propose a solution for the dynamic prediction of a health event that may exploit repeated measures of a possibly large number of markers. We combined a landmark approach extended to endogenous markers history with machine learning methods adapted to survival data. Each marker trajectory is modeled using the information collected up to landmark time, and summary variables that best capture the individual trajectories are derived. These summaries and additional covariates are then included in different prediction methods. To handle a possibly large dimensional history, we rely on machine learning methods adapted to survival data, namely regularized regressions and random survival forests, to predict the event from the landmark time, and we show how they can be combined into a superlearner. Then, the performances are evaluated by cross-validation using estimators of Brier Score and the area under the Receiver Operating Characteristic curve adapted to censored data. We demonstrate in a simulation study the benefits of machine learning survival methods over standard survival models, especially in the case of numerous and/or nonlinear relationships between the predictors and the event. We then applied the methodology in two prediction contexts: a clinical context with the prediction of death for patients with primary biliary cholangitis, and a public health context with the prediction of death in the general elderly population at different ages. Our methodology, implemented in R, enables the prediction of an event using the entire longitudinal patient history, even when the number of repeated markers is large. Although introduced with mixed models for the repeated markers and methods for a single right censored time-to-event, our method can be used with any other appropriate modeling technique for the markers and can be easily extended to competing risks setting.

An increasing number of large-scale multi-modal research initiatives has been conducted in the typically developing population, as well as in psychiatric cohorts. Missing data is a common problem in such datasets due to the difficulty of assessing multiple measures on a large number of participants. The consequences of missing data accumulate when researchers aim to explore relationships between multiple measures. Here we aim to evaluate different imputation strategies to fill in missing values in clinical data from a large (total N=764) and deeply characterised (i.e. range of clinical and cognitive instruments administered) sample of N=453 autistic individuals and N=311 control individuals recruited as part of the EU-AIMS Longitudinal European Autism Project (LEAP) consortium. In particular we consider a total of 160 clinical measures divided in 15 overlapping subsets of participants. We use two simple but common univariate strategies, mean and median imputation, as well as a Round Robin regression approach involving four independent multivariate regression models including a linear model, Bayesian Ridge regression, as well as several non-linear models, Decision Trees, Extra Trees and K-Neighbours regression. We evaluate the models using the traditional mean square error towards removed available data, and consider in addition the KL divergence between the observed and the imputed distributions. We show that all of the multivariate approaches tested provide a substantial improvement compared to typical univariate approaches. Further, our analyses reveal that across all 15 data-subsets tested, an Extra Trees regression approach provided the best global results. This allows the selection of a unique model to impute missing data for the LEAP project and deliver a fixed set of imputed clinical data to be used by researchers working with the LEAP dataset in the future.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

北京阿比特科技有限公司