亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constraint satisfaction problems form a nicely behaved class of problems that lends itself to complexity classification results. From the point of view of parameterized complexity, a natural task is to classify the parameterized complexity of MinCSP problems parameterized by the number of unsatisfied constraints. In other words, we ask whether we can delete at most $k$ constraints, where $k$ is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the parameterized complexity for an important infinite-domain CSP: Allen's interval algebra (IA). This CSP has closed intervals with rational endpoints as domain values and employs a set $A$ of 13 basic comparison relations such as ``precedes'' or ``during'' for relating intervals. IA is a highly influential and well-studied formalism within AI and qualitative reasoning that has numerous applications in, for instance, planning, natural language processing and molecular biology. We provide an FPT vs. W[1]-hard dichotomy for MinCSP$(\Gamma)$ for all $\Gamma \subseteq A$. IA is sometimes extended with unions of the relations in $A$ or first-order definable relations over $A$, but extending our results to these cases would require first solving the parameterized complexity of Directed Symmetric Multicut, which is a notorious open problem. Already in this limited setting, we uncover connections to new variants of graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback arc set problems in directed graphs, as well as new tractable cases with algorithms based on the recently introduced flow augmentation technique. Given the intractability of MinCSP$(A)$ in general, we then consider (parameterized) approximation algorithms and present a factor-$2$ fpt-approximation algorithm.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

\textit{Pursuit-evasion games} have been intensively studied for several decades due to their numerous applications in artificial intelligence, robot motion planning, database theory, distributed computing, and algorithmic theory. \textsc{Cops and Robber} (\CR) is one of the most well-known pursuit-evasion games played on graphs, where multiple \textit{cops} pursue a single \textit{robber}. The aim is to compute the \textit{cop number} of a graph, $k$, which is the minimum number of cops that ensures the \textit{capture} of the robber. From the viewpoint of parameterized complexity, \CR is W[2]-hard parameterized by $k$~[Fomin et al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the \textit{vertex cover number} ($\mathsf{vcn}$). First, we establish that $k \leq \frac{\mathsf{vcn}}{3}+1$. Second, we prove that \CR parameterized by $\mathsf{vcn}$ is \FPT by designing an exponential kernel. We complement this result by showing that it is unlikely for \CR parameterized by $\mathsf{vcn}$ to admit a polynomial compression. We extend our exponential kernels to the parameters \textit{cluster vertex deletion number} and \textit{deletion to stars number}, and design a linear vertex kernel for \textit{neighborhood diversity}. Additionally, we extend all of our results to several well-studied variations of \CR.

A query game is a pair of a set $Q$ of queries and a set $\mathcal{F}$ of functions, or codewords $f:Q\rightarrow \mathbb{Z}.$ We think of this as a two-player game. One player, Codemaker, picks a hidden codeword $f\in \mathcal{F}$. The other player, Codebreaker, then tries to determine $f$ by asking a sequence of queries $q\in Q$, after each of which Codemaker must respond with the value $f(q)$. The goal of Codebreaker is to uniquely determine $f$ using as few queries as possible. Two classical examples of such games are coin-weighing with a spring scale, and Mastermind, which are of interest both as recreational games and for their connection to information theory. In this paper, we will present a general framework for finding short solutions to query games. As applications, we give new self-contained proofs of the query complexity of variations of the coin-weighing problems, and prove new results that the deterministic query complexity of Mastermind with $n$ positions and $k$ colors is $\Theta(n \log k/ \log n + k)$ if only black-peg information is provided, and $\Theta(n \log k / \log n + k/n)$ if both black- and white-peg information is provided. In the deterministic setting, these are the first up to constant factor optimal solutions to Mastermind known for any $k\geq n^{1-o(1)}$.

This work, for the first time, introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular maximization over a ground set of size $n$ subject to a knapsack constraint, $\mathsf{DLA}$ and $\mathsf{RLA}$. $\mathsf{DLA}$ is a deterministic algorithm that provides an approximation factor of $6+\epsilon$ while $\mathsf{RLA}$ is a randomized algorithm with an approximation factor of $4+\epsilon$. Both run in $O(n \log(1/\epsilon)/\epsilon)$ query complexity. The key idea to obtain a constant approximation ratio with linear query lies in: (1) dividing the ground set into two appropriate subsets to find the near-optimal solution over these subsets with linear queries, and (2) combining a threshold greedy with properties of two disjoint sets or a random selection process to improve solution quality. In addition to the theoretical analysis, we have evaluated our proposed solutions with three applications: Revenue Maximization, Image Summarization, and Maximum Weighted Cut, showing that our algorithms not only return comparative results to state-of-the-art algorithms but also require significantly fewer queries.

We prove a characterization of the structural conditions on matrices of sign-rank 3 and unit disk graphs (UDGs) which permit constant-cost public-coin randomized communication protocols. Therefore, under these conditions, these graphs also admit implicit representations. The sign-rank of a matrix $M \in \{\pm 1\}^{N \times N}$ is the smallest rank of a matrix $R$ such that $M_{i,j} = \mathrm{sign}(R_{i,j})$ for all $i,j \in [N]$; equivalently, it is the smallest dimension $d$ in which $M$ can be represented as a point-halfspace incidence matrix with halfspaces through the origin, and it is essentially equivalent to the unbounded-error communication complexity. Matrices of sign-rank 3 can achieve the maximum possible bounded-error randomized communication complexity $\Theta(\log N)$, and meanwhile the existence of implicit representations for graphs of bounded sign-rank (including UDGs, which have sign-rank 4) has been open since at least 2003. We prove that matrices of sign-rank 3, and UDGs, have constant randomized communication complexity if and only if they do not encode arbitrarily large instances of the Greater-Than communication problem, or, equivalently, if they do not contain arbitrarily large half-graphs as semi-induced subgraphs. This also establishes the existence of implicit representations for these graphs under the same conditions.

Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

We prove a strong composition theorem for junta complexity and show how such theorems can be used to generically boost the performance of property testers. The $\varepsilon$-approximate junta complexity of a function $f$ is the smallest integer $r$ such that $f$ is $\varepsilon$-close to a function that depends only on $r$ variables. A strong composition theorem states that if $f$ has large $\varepsilon$-approximate junta complexity, then $g \circ f$ has even larger $\varepsilon'$-approximate junta complexity, even for $\varepsilon' \gg \varepsilon$. We develop a fairly complete understanding of this behavior, proving that the junta complexity of $g \circ f$ is characterized by that of $f$ along with the multivariate noise sensitivity of $g$. For the important case of symmetric functions $g$, we relate their multivariate noise sensitivity to the simpler and well-studied case of univariate noise sensitivity. We then show how strong composition theorems yield boosting algorithms for property testers: with a strong composition theorem for any class of functions, a large-distance tester for that class is immediately upgraded into one for small distances. Combining our contributions yields a booster for junta testers, and with it new implications for junta testing. This is the first boosting-type result in property testing, and we hope that the connection to composition theorems adds compelling motivation to the study of both topics.

For any Boolean functions $f$ and $g$, the question whether $R(f\circ g) = \tilde{\Theta}(R(f)R(g))$, is known as the composition question for the randomized query complexity. Similarly, the composition question for the approximate degree asks whether $\widetilde{deg}(f\circ g) = \tilde{\Theta}(\widetilde{deg}(f)\cdot\widetilde{deg}(g))$. These questions are two of the most important and well-studied problems, and yet we are far from answering them satisfactorily. It is known that the measures compose if one assumes various properties of the outer function $f$ (or inner function $g$). This paper extends the class of outer functions for which $\text{R}$ and $\widetilde{\text{deg}}$ compose. A recent landmark result (Ben-David and Blais, 2020) showed that $R(f \circ g) = \Omega(noisyR(f)\cdot R(g))$. This implies that composition holds whenever $noisyR(f) = \Tilde{\Theta}(R(f))$. We show two results: (1)When $R(f) = \Theta(n)$, then $noisyR(f) = \Theta(R(f))$. (2) If $\text{R}$ composes with respect to an outer function, then $\text{noisyR}$ also composes with respect to the same outer function. On the other hand, no result of the type $\widetilde{deg}(f \circ g) = \Omega(M(f) \cdot \widetilde{deg}(g))$ (for some non-trivial complexity measure $M(\cdot)$) was known to the best of our knowledge. We prove that $\widetilde{deg}(f\circ g) = \widetilde{\Omega}(\sqrt{bs(f)} \cdot \widetilde{deg}(g)),$ where $bs(f)$ is the block sensitivity of $f$. This implies that $\widetilde{\text{deg}}$ composes when $\widetilde{\text{deg}}(f)$ is asymptotically equal to $\sqrt{\text{bs}(f)}$. It is already known that both $\text{R}$ and $\widetilde{\text{deg}}$ compose when the outer function is symmetric. We also extend these results to weaker notions of symmetry with respect to the outer function.

Maximum weight independent set (MWIS) admits a $\frac1k$-approximation in inductively $k$-independent graphs and a $\frac{1}{2k}$-approximation in $k$-perfectly orientable graphs. These are a a parameterized class of graphs that generalize $k$-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others. We consider a generalization of MWIS to a submodular objective. Given a graph $G=(V,E)$ and a non-negative submodular function $f: 2^V \rightarrow \mathbb{R}_+$, the goal is to approximately solve $\max_{S \in \mathcal{I}_G} f(S)$ where $\mathcal{I}_G$ is the set of independent sets of $G$. We obtain an $\Omega(\frac1k)$-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least $\frac{1}{e(k+1)}$. This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively $k$-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.

The Chinese Remainder Theorem for the integers says that every system of congruence equations is solvable as long as the system satisfies an obvious necessary condition. This statement can be generalized in a natural way to arbitrary algebraic structures using the language of Universal Algebra. In this context, an algebra is a structure of a first-order language with no relation symbols, and a congruence on an algebra is an equivalence relation on its base set compatible with its fundamental operations. A tuple of congruences of an algebra is called a Chinese Remainder tuple if every system involving them is solvable. In this article we study the complexity of deciding whether a tuple of congruences of a finite algebra is a Chinese Remainder tuple. This problem, which we denote CRT, is easily seen to lie in coNP. We prove that it is actually coNP-complete and also show that it is tractable when restricted to several well-known classes of algebras, such as vector spaces and distributive lattices. The polynomial algorithms we exhibit are made possible by purely algebraic characterizations of Chinese Remainder tuples for algebras in these classes, which constitute interesting results in their own right. Among these, an elegant characterization of Chinese Remainder tuples of finite distributive lattices stands out. Finally, we address the restriction of CRT to an arbitrary equational class $\mathcal{V}$ generated by a two-element algebra. Here we establish an (almost) dichotomy by showing that, unless $\mathcal{V}$ is the class of semilattices, the problem is either coNP-complete or tractable.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司