The theory of Koopman operators allows to deploy non-parametric machine learning algorithms to predict and analyze complex dynamical systems. Estimators such as principal component regression (PCR) or reduced rank regression (RRR) in kernel spaces can be shown to provably learn Koopman operators from finite empirical observations of the system's time evolution. Scaling these approaches to very long trajectories is a challenge and requires introducing suitable approximations to make computations feasible. In this paper, we boost the efficiency of different kernel-based Koopman operator estimators using random projections (sketching). We derive, implement and test the new "sketched" estimators with extensive experiments on synthetic and large-scale molecular dynamics datasets. Further, we establish non asymptotic error bounds giving a sharp characterization of the trade-offs between statistical learning rates and computational efficiency. Our empirical and theoretical analysis shows that the proposed estimators provide a sound and efficient way to learn large scale dynamical systems. In particular our experiments indicate that the proposed estimators retain the same accuracy of PCR or RRR, while being much faster.
Autonomous robots deployed in the real world will need control policies that rapidly adapt to environmental changes. To this end, we propose AutoRobotics-Zero (ARZ), a method based on AutoML-Zero that discovers zero-shot adaptable policies from scratch. In contrast to neural network adaption policies, where only model parameters are optimized, ARZ can build control algorithms with the full expressive power of a linear register machine. We evolve modular policies that tune their model parameters and alter their inference algorithm on-the-fly to adapt to sudden environmental changes. We demonstrate our method on a realistic simulated quadruped robot, for which we evolve safe control policies that avoid falling when individual limbs suddenly break. This is a challenging task in which two popular neural network baselines fail. Finally, we conduct a detailed analysis of our method on a novel and challenging non-stationary control task dubbed Cataclysmic Cartpole. Results confirm our findings that ARZ is significantly more robust to sudden environmental changes and can build simple, interpretable control policies.
Preserving the topology from being inferred by external adversaries has become a paramount security issue for network systems (NSs), and adding random noises to the nodal states provides a promising way. Nevertheless, recent works have revealed that the topology cannot be preserved under i.i.d. noises in the asymptotic sense. How to effectively characterize the non-asymptotic preservation performance still remains an open issue. Inspired by the deviation quantification of concentration inequalities, this paper proposes a novel metric named trace-based variance-expectation ratio. This metric effectively captures the decaying rate of the topology inference error, where a slower rate indicates better non-asymptotic preservation performance. We prove that the inference error will always decay to zero asymptotically, as long as the added noises are non-increasing and independent (milder than the i.i.d. condition). Then, the optimal noise design that produces the slowest decaying rate for the error is obtained. More importantly, we amend the noise design by introducing one-lag time dependence, achieving the zero state deviation and the non-zero topology inference error in the asymptotic sense simultaneously. Extensions to a general class of noises with multi-lag time dependence are provided. Comprehensive simulations verify the theoretical findings.
To quantify uncertainties in inverse problems of partial differential equations (PDEs), we formulate them into statistical inference problems using Bayes' formula. Recently, well-justified infinite-dimensional Bayesian analysis methods have been developed to construct dimension-independent algorithms. However, there are three challenges for these infinite-dimensional Bayesian methods: prior measures usually act as regularizers and are not able to incorporate prior information efficiently; complex noises, such as more practical non-i.i.d. distributed noises, are rarely considered; and time-consuming forward PDE solvers are needed to estimate posterior statistical quantities. To address these issues, an infinite-dimensional inference framework has been proposed based on the infinite-dimensional variational inference method and deep generative models. Specifically, by introducing some measure equivalence assumptions, we derive the evidence lower bound in the infinite-dimensional setting and provide possible parametric strategies that yield a general inference framework called the Variational Inverting Network (VINet). This inference framework can encode prior and noise information from learning examples. In addition, relying on the power of deep neural networks, the posterior mean and variance can be efficiently and explicitly generated in the inference stage. In numerical experiments, we design specific network structures that yield a computable VINet from the general inference framework. Numerical examples of linear inverse problems of an elliptic equation and the Helmholtz equation are presented to illustrate the effectiveness of the proposed inference framework.
Existing research efforts for multi-interest candidate matching in recommender systems mainly focus on improving model architecture or incorporating additional information, neglecting the importance of training schemes. This work revisits the training framework and uncovers two major problems hindering the expressiveness of learned multi-interest representations. First, the current training objective (i.e., uniformly sampled softmax) fails to effectively train discriminative representations in a multi-interest learning scenario due to the severe increase in easy negative samples. Second, a routing collapse problem is observed where each learned interest may collapse to express information only from a single item, resulting in information loss. To address these issues, we propose the REMI framework, consisting of an Interest-aware Hard Negative mining strategy (IHN) and a Routing Regularization (RR) method. IHN emphasizes interest-aware hard negatives by proposing an ideal sampling distribution and developing a Monte-Carlo strategy for efficient approximation. RR prevents routing collapse by introducing a novel regularization term on the item-to-interest routing matrices. These two components enhance the learned multi-interest representations from both the optimization objective and the composition information. REMI is a general framework that can be readily applied to various existing multi-interest candidate matching methods. Experiments on three real-world datasets show our method can significantly improve state-of-the-art methods with easy implementation and negligible computational overhead. The source code will be released.
In this paper, we propose efficient quantum algorithms for solving nonlinear stochastic differential equations (SDE) via the associated Fokker-Planck equation (FPE). We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference. We then compute the solution of the resulting system of linear equations using the quantum linear systems algorithm. We present detailed error and complexity analyses for both these schemes and demonstrate that our proposed algorithms, under certain conditions, provably compute the solution to the FPE within prescribed $\epsilon$ error bounds with polynomial dependence on state dimension $d$. Classical numerical methods scale exponentially with dimension, thus, our approach, under the aforementioned conditions, provides an \emph{exponential speed-up} over traditional approaches.
In this paper we give the first efficient algorithms for the $k$-center problem on dynamic graphs undergoing edge updates. In this problem, the goal is to partition the input into $k$ sets by choosing $k$ centers such that the maximum distance from any data point to the closest center is minimized. It is known that it is NP-hard to get a better than $2$ approximation for this problem. While in many applications the input may naturally be modeled as a graph, all prior works on $k$-center problem in dynamic settings are on metrics. In this paper, we give a deterministic decremental $(2+\epsilon)$-approximation algorithm and a randomized incremental $(4+\epsilon)$-approximation algorithm, both with amortized update time $kn^{o(1)}$ for weighted graphs. Moreover, we show a reduction that leads to a fully dynamic $(2+\epsilon)$-approximation algorithm for the $k$-center problem, with worst-case update time that is within a factor $k$ of the state-of-the-art upper bound for maintaining $(1+\epsilon)$-approximate single-source distances in graphs. Matching this bound is a natural goalpost because the approximate distances of each vertex to its center can be used to maintain a $(2+\epsilon)$-approximation of the graph diameter and the fastest known algorithms for such a diameter approximation also rely on maintaining approximate single-source distances.
The Koopman operator has become an essential tool for data-driven analysis, prediction and control of complex systems, the main reason being the enormous potential of identifying linear function space representations of nonlinear dynamics from measurements. Until now, the situation where for large-scale systems, we (i) only have access to partial observations (i.e., measurements, as is very common for experimental data) or (ii) deliberately perform coarse graining (for efficiency reasons) has not been treated to its full extent. In this paper, we address the pitfall associated with this situation, that the classical EDMD algorithm does not automatically provide a Koopman operator approximation for the underlying system if we do not carefully select the number of observables. Moreover, we show that symmetries in the system dynamics can be carried over to the Koopman operator, which allows us to massively increase the model efficiency. We also briefly draw a connection to domain decomposition techniques for partial differential equations and present numerical evidence using the Kuramoto--Sivashinsky equation.
Algorithmic Gaussianization is a phenomenon that can arise when using randomized sketching or sampling methods to produce smaller representations of large datasets: For certain tasks, these sketched representations have been observed to exhibit many robust performance characteristics that are known to occur when a data sample comes from a sub-gaussian random design, which is a powerful statistical model of data distributions. However, this phenomenon has only been studied for specific tasks and metrics, or by relying on computationally expensive methods. We address this by providing an algorithmic framework for gaussianizing data distributions via averaging, proving that it is possible to efficiently construct data sketches that are nearly indistinguishable (in terms of total variation distance) from sub-gaussian random designs. In particular, relying on a recently introduced sketching technique called Leverage Score Sparsified (LESS) embeddings, we show that one can construct an $n\times d$ sketch of an $N\times d$ matrix $A$, where $n\ll N$, that is nearly indistinguishable from a sub-gaussian design, in time $O(\text{nnz}(A)\log N + nd^2)$, where $\text{nnz}(A)$ is the number of non-zero entries in $A$. As a consequence, strong statistical guarantees and precise asymptotics available for the estimators produced from sub-gaussian designs (e.g., for least squares and Lasso regression, covariance estimation, low-rank approximation, etc.) can be straightforwardly adapted to our sketching framework. We illustrate this with a new approximation guarantee for sketched least squares, among other examples.
This paper studies the estimation and inference of treatment histories in panel data settings when treatments change dynamically over time. We propose a method that allows for (i) treatments to be assigned dynamically over time based on high-dimensional covariates, past outcomes and treatments; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) heterogeneity of treatment effects. Our approach recursively projects potential outcomes' expectations on past histories. It then controls the bias by balancing dynamically observable characteristics. We study the asymptotic and numerical properties of the estimator and illustrate the benefits of the procedure in an empirical application.
While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the LeadingOnes and Jump benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size $m$. A short empirical analysis confirms these findings, but also reveals that small implementation details like the rate of void mutations can make an important difference.