亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents DeepTSF, a comprehensive machine learning operations (MLOps) framework aiming to innovate time series forecasting through workflow automation and codeless modeling. DeepTSF automates key aspects of the ML lifecycle, making it an ideal tool for data scientists and MLops engineers engaged in machine learning (ML) and deep learning (DL)-based forecasting. DeepTSF empowers users with a robust and user-friendly solution, while it is designed to seamlessly integrate with existing data analysis workflows, providing enhanced productivity and compatibility. The framework offers a front-end user interface (UI) suitable for data scientists, as well as other higher-level stakeholders, enabling comprehensive understanding through insightful visualizations and evaluation metrics. DeepTSF also prioritizes security through identity management and access authorization mechanisms. The application of DeepTSF in real-life use cases of the I-NERGY project has already proven DeepTSF's efficacy in DL-based load forecasting, showcasing its significant added value in the electrical power and energy systems domain.

相關內容

機器學習(Machine Learning)是一個研究計算學習方法的國際論壇。該雜志發表文章,報告廣泛的學習方法應用于各種學習問題的實質性結果。該雜志的特色論文描述研究的問題和方法,應用研究和研究方法的問題。有關學習問題或方法的論文通過實證研究、理論分析或與心理現象的比較提供了堅實的支持。應用論文展示了如何應用學習方法來解決重要的應用問題。研究方法論文改進了機器學習的研究方法。所有的論文都以其他研究人員可以驗證或復制的方式描述了支持證據。論文還詳細說明了學習的組成部分,并討論了關于知識表示和性能任務的假設。 官網地址:

Surface defect inspection is of great importance for industrial manufacture and production. Though defect inspection methods based on deep learning have made significant progress, there are still some challenges for these methods, such as indistinguishable weak defects and defect-like interference in the background. To address these issues, we propose a transformer network with multi-stage CNN (Convolutional Neural Network) feature injection for surface defect segmentation, which is a UNet-like structure named CINFormer. CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder. This can maintain the merit of CNN capturing detailed features and that of transformer depressing noises in the background, which facilitates accurate defect detection. In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects, so as to further reduce the impact of the redundant background. Extensive experiments conducted on the surface defect datasets DAGM 2007, Magnetic tile, and NEU show that the proposed CINFormer achieves state-of-the-art performance in defect detection.

Dual-path is a popular architecture for speech separation models (e.g. Sepformer) which splits long sequences into overlapping chunks for its intra- and inter-blocks that separately model intra-chunk local features and inter-chunk global relationships. However, it has been found that inter-blocks, which comprise half a dual-path model's parameters, contribute minimally to performance. Thus, we propose the Single-Path Global Modulation (SPGM) block to replace inter-blocks. SPGM is named after its structure consisting of a parameter-free global pooling module followed by a modulation module comprising only 2% of the model's total parameters. The SPGM block allows all transformer layers in the model to be dedicated to local feature modelling, making the overall model single-path. SPGM achieves 22.1 dB SI-SDRi on WSJ0-2Mix and 20.4 dB SI-SDRi on Libri2Mix, exceeding the performance of Sepformer by 0.5 dB and 0.3 dB respectively and matches the performance of recent SOTA models with up to 8 times fewer parameters.

Hierarchical reinforcement learning (HRL) has the potential to solve complex long horizon tasks using temporal abstraction and increased exploration. However, hierarchical agents are difficult to train due to inherent non-stationarity. We present primitive enabled adaptive relabeling (PEAR), a two-phase approach where we first perform adaptive relabeling on a few expert demonstrations to generate efficient subgoal supervision, and then jointly optimize HRL agents by employing reinforcement learning (RL) and imitation learning (IL). We perform theoretical analysis to $(i)$ bound the sub-optimality of our approach, and $(ii)$ derive a generalized plug-and-play framework for joint optimization using RL and IL. PEAR uses a handful of expert demonstrations and makes minimal limiting assumptions on the task structure. Additionally, it can be easily integrated with typical model free RL algorithms to produce a practical HRL algorithm. We perform experiments on challenging robotic environments and show that PEAR is able to solve tasks that require long term decision making. We empirically show that PEAR exhibits improved performance and sample efficiency over previous hierarchical and non-hierarchical approaches. We also perform real world robotic experiments on complex tasks and demonstrate that PEAR consistently outperforms the baselines.

Learning effective recommendation models from sparse user interactions represents a fundamental challenge in developing sequential recommendation methods. Recently, pre-training-based methods have been developed to tackle this challenge. Though promising, in this paper, we show that existing methods suffer from the notorious negative transfer issue, where the model adapted from the pre-trained model results in worse performance compared to the model learned from scratch in the task of interest (i.e., target task). To address this issue, we develop a method, denoted as ANT, for transferable sequential recommendation. ANT mitigates negative transfer by 1) incorporating multi-modality item information, including item texts, images and prices, to effectively learn more transferable knowledge from related tasks (i.e., auxiliary tasks); and 2) better capturing task-specific knowledge in the target task using a re-learning-based adaptation strategy. We evaluate ANT against eight state-of-the-art baseline methods on five target tasks. Our experimental results demonstrate that ANT does not suffer from the negative transfer issue on any of the target tasks. The results also demonstrate that ANT substantially outperforms baseline methods in the target tasks with an improvement of as much as 15.2%. Our analysis highlights the superior effectiveness of our re-learning-based strategy compared to fine-tuning on the target tasks.

This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM), i.e., improving the performance on unseen classes while maintaining the performance on seen classes. Comparing with existing generalizable methods that neglect the seen classes degradation, the setting of this problem is more strict and fits more closely with practical applications. To solve this problem, we start from the optimization perspective, and leverage the relationship between loss landscape geometry and model generalization ability. By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness, while each of them is indispensable. However, we find the optimizing gradient of existing methods cannot maintain high relevance to both loss value and loss sharpness during optimization, which severely affects their trade-off performance. To this end, we propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp), to dynamically constrain the optimizing gradient, thus achieving above two-fold optimization objective simultaneously. Extensive experiments verify the effectiveness of GCSCoOp in the trade-off problem.

This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司