Estimating the trajectories of multi-objects poses a significant challenge due to data association ambiguity, which leads to a substantial increase in computational requirements. To address such problems, a divide-and-conquer manner has been employed with parallel computation. In this strategy, distinguished objects that have unique labels are grouped based on their statistical dependencies, the intersection of predicted measurements. Several geometry approaches have been used for label grouping since finding all intersected label pairs is clearly infeasible for large-scale tracking problems. This paper proposes an efficient implementation of label grouping for label-partitioned generalized labeled multi-Bernoulli filter framework using a secondary partitioning technique. This allows for parallel computation in the label graph indexing step, avoiding generating and eliminating duplicate comparisons. Additionally, we compare the performance of the proposed technique with several efficient spatial searching algorithms. The results demonstrate the superior performance of the proposed approach on large-scale data sets, enabling scalable trajectory estimation.
Temporal action localization aims to identify the boundaries and categories of actions in videos, such as scoring a goal in a football match. Single-frame supervision has emerged as a labor-efficient way to train action localizers as it requires only one annotated frame per action. However, it often suffers from poor performance due to the lack of precise boundary annotations. To address this issue, we propose a visual analysis method that aligns similar actions and then propagates a few user-provided annotations (e.g. , boundaries, category labels) to similar actions via the generated alignments. Our method models the alignment between actions as a heaviest path problem and the annotation propagation as a quadratic optimization problem. As the automatically generated alignments may not accurately match the associated actions and could produce inaccurate localization results, we develop a storyline visualization to explain the localization results of actions and their alignments. This visualization facilitates users in correcting wrong localization results and misalignments. The corrections are then used to improve the localization results of other actions. The effectiveness of our method in improving localization performance is demonstrated through quantitative evaluation and a case study.
We consider the high-dimensional linear regression model and assume that a fraction of the measurements are altered by an adversary with complete knowledge of the data and the underlying distribution. We are interested in a scenario where dense additive noise is heavy-tailed while the measurement vectors follow a sub-Gaussian distribution. Within this framework, we establish minimax lower bounds for the performance of an arbitrary estimator that depend on the the fraction of corrupted observations as well as the tail behavior of the additive noise. Moreover, we design a modification of the so-called Square-Root Slope estimator with several desirable features: (a) it is provably robust to adversarial contamination, and satisfies performance guarantees in the form of sub-Gaussian deviation inequalities that match the lower error bounds, up to logarithmic factors; (b) it is fully adaptive with respect to the unknown sparsity level and the variance of the additive noise, and (c) it is computationally tractable as a solution of a convex optimization problem. To analyze performance of the proposed estimator, we prove several properties of matrices with sub-Gaussian rows that may be of independent interest.
The success of self-supervised contrastive learning hinges on identifying positive data pairs that, when pushed together in embedding space, encode useful information for subsequent downstream tasks. However, in time-series, this is challenging because creating positive pairs via augmentations may break the original semantic meaning. We hypothesize that if we can retrieve information from one subsequence to successfully reconstruct another subsequence, then they should form a positive pair. Harnessing this intuition, we introduce our novel approach: REtrieval-BAsed Reconstruction (REBAR) contrastive learning. First, we utilize a convolutional cross-attention architecture to calculate the REBAR error between two different time-series. Then, through validation experiments, we show that the REBAR error is a predictor of mutual class membership, justifying its usage as a positive/negative labeler. Finally, once integrated into a contrastive learning framework, our REBAR method can learn an embedding that achieves state-of-the-art performance on downstream tasks across various modalities.
With the constant spread of misinformation on social media networks, a need has arisen to continuously assess the veracity of digital content. This need has inspired numerous research efforts on the development of misinformation detection (MD) models. However, many models do not use all information available to them and existing research contains a lack of relevant datasets to train the models, specifically within the South African social media environment. The aim of this paper is to investigate the transferability of knowledge of a MD model between different contextual environments. This research contributes a multimodal MD model capable of functioning in the South African social media environment, as well as introduces a South African misinformation dataset. The model makes use of multiple sources of information for misinformation detection, namely: textual and visual elements. It uses bidirectional encoder representations from transformers (BERT) as the textual encoder and a residual network (ResNet) as the visual encoder. The model is trained and evaluated on the Fakeddit dataset and a South African misinformation dataset. Results show that using South African samples in the training of the model increases model performance, in a South African contextual environment, and that a multimodal model retains significantly more knowledge than both the textual and visual unimodal models. Our study suggests that the performance of a misinformation detection model is influenced by the cultural nuances of its operating environment and multimodal models assist in the transferability of knowledge between different contextual environments. Therefore, local data should be incorporated into the training process of a misinformation detection model in order to optimize model performance.
In the process of training a generative model, it becomes essential to measure the discrepancy between two high-dimensional probability distributions: the generative distribution and the ground-truth distribution of the observed dataset. Recently, there has been growing interest in an approach that involves slicing high-dimensional distributions, with the Cramer-Wold distance emerging as a promising method. However, we have identified that the Cramer-Wold distance primarily focuses on joint distributional learning, whereas understanding marginal distributional patterns is crucial for effective synthetic data generation. In this paper, we introduce a novel measure of dissimilarity, the mixture Cramer-Wold distance. This measure enables us to capture both marginal and joint distributional information simultaneously, as it incorporates a mixture measure with point masses on standard basis vectors. Building upon the mixture Cramer-Wold distance, we propose a new generative model called CWDAE (Cramer-Wold Distributional AutoEncoder), which shows remarkable performance in generating synthetic data when applied to real tabular datasets. Furthermore, our model offers the flexibility to adjust the level of data privacy with ease.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.