亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Panoptic Scene Graph (PSG) is a challenging task in Scene Graph Generation (SGG) that aims to create a more comprehensive scene graph representation using panoptic segmentation instead of boxes. Compared to SGG, PSG has several challenging problems: pixel-level segment outputs and full relationship exploration (It also considers thing and stuff relation). Thus, current PSG methods have limited performance, which hinders downstream tasks or applications. The goal of this work aims to design a novel and strong baseline for PSG. To achieve that, we first conduct an in-depth analysis to identify the bottleneck of the current PSG models, finding that inter-object pair-wise recall is a crucial factor that was ignored by previous PSG methods. Based on this and the recent query-based frameworks, we present a novel framework: Pair then Relation (Pair-Net), which uses a Pair Proposal Network (PPN) to learn and filter sparse pair-wise relationships between subjects and objects. Moreover, we also observed the sparse nature of object pairs for both Motivated by this, we design a lightweight Matrix Learner within the PPN, which directly learns pair-wised relationships for pair proposal generation. Through extensive ablation and analysis, our approach significantly improves upon leveraging the segmenter solid baseline. Notably, our method achieves over 10\% absolute gains compared to our baseline, PSGFormer. The code of this paper is publicly available at //github.com/king159/Pair-Net.

相關內容

兩人親密社交應用,官網:

Classification tasks are typically handled using Machine Learning (ML) models, which lack a balance between accuracy and interpretability. This paper introduces a new approach to using Large Language Models (LLMs) for classification tasks in an explainable way. Unlike ML models that rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a new concept called "Language Model Learning (LML)" powered by a new method called "Data-Augmented Prediction (DAP)". The classification is performed by LLMs using a method similar to humans manually exploring and understanding the data and deciding classifications using data as a reference. In the LML process, a dataset is summarized and evaluated to determine the features that lead to the classification of each label the most. In the process of DAP, the system uses the data summary and a row of the testing dataset to automatically generate a query, which is used to retrieve relevant rows from the dataset. A classification is generated by the LLM using data summary and relevant rows, ensuring satisfactory accuracy even with complex data using context-aware decision-making. LML and DAP unlock the possibilities of new applications. The proposed method uses the words "Act as an Explainable Machine Learning Model" in the prompt to enhance the interpretability of the predictions by allowing users to review the logic behind each prediction. In some test cases, the system scored an accuracy above 90%, proving the effectiveness of the system and its potential to outperform conventional ML models in various scenarios. The code is available at //github.com/Pro-GenAI/LML-DAP

As Large Language Models (LLMs) become increasingly integrated into our daily lives, the potential harms from deceptive behavior underlie the need for faithfully interpreting their decision-making. While traditional probing methods have shown some effectiveness, they remain best for narrowly scoped tasks while more comprehensive explanations are still necessary. To this end, we investigate meta-models-an architecture using a "meta-model" that takes activations from an "input-model" and answers natural language questions about the input-model's behaviors. We evaluate the meta-model's ability to generalize by training them on selected task types and assessing their out-of-distribution performance in deceptive scenarios. Our findings show that meta-models generalize well to out-of-distribution tasks and point towards opportunities for future research in this area.

Federated Learning (FL) is a technique that allows multiple parties to train a shared model collaboratively without disclosing their private data. It has become increasingly popular due to its distinct privacy advantages. However, FL models can suffer from biases against certain demographic groups (e.g., racial and gender groups) due to the heterogeneity of data and party selection. Researchers have proposed various strategies for characterizing the group fairness of FL algorithms to address this issue. However, the effectiveness of these strategies in the face of deliberate adversarial attacks has not been fully explored. Although existing studies have revealed various threats (e.g., model poisoning attacks) against FL systems caused by malicious participants, their primary aim is to decrease model accuracy, while the potential of leveraging poisonous model updates to exacerbate model unfairness remains unexplored. In this paper, we propose a new type of model poisoning attack, EAB-FL, with a focus on exacerbating group unfairness while maintaining a good level of model utility. Extensive experiments on three datasets demonstrate the effectiveness and efficiency of our attack, even with state-of-the-art fairness optimization algorithms and secure aggregation rules employed.

Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs), but existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence, particularly when using open-source LLMs. To mitigate this gap, we introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs. Our framework transforms an arbitrary dense LLM into a parameter-efficient sparse mixture of experts (MoE) model capable of handling complex reasoning tasks, including both single- and multi-hop queries. Open-RAG uniquely trains the model to navigate challenging distractors that appear relevant but are misleading. As a result, Open-RAG leverages latent learning, dynamically selecting relevant experts and integrating external knowledge effectively for more accurate and contextually relevant responses. In addition, we propose a hybrid adaptive retrieval method to determine retrieval necessity and balance the trade-off between performance gain and inference speed. Experimental results show that the Llama2-7B-based Open-RAG outperforms state-of-the-art LLMs and RAG models such as ChatGPT, Self-RAG, and Command R+ in various knowledge-intensive tasks. We open-source our code and models at //openragmoe.github.io/

Large Language Models (LLMs) showcase remarkable abilities, yet they struggle with limitations such as hallucinations, outdated knowledge, opacity, and inexplicable reasoning. To address these challenges, Retrieval-Augmented Generation (RAG) has proven to be a viable solution, leveraging external databases to improve the consistency and coherence of generated content, especially valuable for complex, knowledge-rich tasks, and facilitates continuous improvement by leveraging domain-specific insights. By combining the intrinsic knowledge of LLMs with the vast, dynamic repositories of external databases, RAG achieves a synergistic effect. However, RAG is not without its limitations, including a limited context window, irrelevant information, and the high processing overhead for extensive contextual data. In this comprehensive work, we explore the evolution of Contextual Compression paradigms, providing an in-depth examination of the field. Finally, we outline the current challenges and suggest potential research and development directions, paving the way for future advancements in this area.

3D Gaussian splatting (3DGS) offers the capability to achieve real-time high quality 3D scene rendering. However, 3DGS assumes that the scene is in a clear medium environment and struggles to generate satisfactory representations in underwater scenes, where light absorption and scattering are prevalent and moving objects are involved. To overcome these, we introduce a novel Gaussian Splatting-based method, UW-GS, designed specifically for underwater applications. It introduces a color appearance that models distance-dependent color variation, employs a new physics-based density control strategy to enhance clarity for distant objects, and uses a binary motion mask to handle dynamic content. Optimized with a well-designed loss function supporting for scattering media and strengthened by pseudo-depth maps, UW-GS outperforms existing methods with PSNR gains up to 1.26dB. To fully verify the effectiveness of the model, we also developed a new underwater dataset, S-UW, with dynamic object masks.

Dealing with Partially Observable Markov Decision Processes is notably a challenging task. We face an average-reward infinite-horizon POMDP setting with an unknown transition model, where we assume the knowledge of the observation model. Under this assumption, we propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy. Then, we propose the OAS-UCRL algorithm that implicitly balances the exploration-exploitation trade-off following the $\textit{optimism in the face of uncertainty}$ principle. The algorithm runs through episodes of increasing length. For each episode, the optimal belief-based policy of the estimated POMDP interacts with the environment and collects samples that will be used in the next episode by the OAS estimation procedure to compute a new estimate of the POMDP parameters. Given the estimated model, an optimization oracle computes the new optimal policy. We show the consistency of the OAS procedure, and we prove a regret guarantee of order $\mathcal{O}(\sqrt{T \log(T)})$ for the proposed OAS-UCRL algorithm. We compare against the oracle playing the optimal stochastic belief-based policy and show the efficient scaling of our approach with respect to the dimensionality of the state, action, and observation space. We finally conduct numerical simulations to validate and compare the proposed technique with other baseline approaches.

Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs' performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

北京阿比特科技有限公司