亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the Falcon series: 7B, 40B, and 180B parameters causal decoder-only models trained on a diverse high-quality corpora predominantly assembled from web data. The largest model, Falcon-180B, has been trained on over 3.5 trillion tokens of text--the largest openly documented pretraining run. Falcon-180B significantly outperforms models such as PaLM or Chinchilla, and improves upon concurrently developed models such as LLaMA 2 or Inflection-1. It nears the performance of PaLM-2-Large at a reduced pretraining and inference cost, making it, to our knowledge, one of the three best language models in the world along with GPT-4 and PaLM-2-Large. We report detailed evaluations, as well as a deep dive into the methods and custom tooling employed to pretrain Falcon. Notably, we report on our custom distributed training codebase, allowing us to efficiently pretrain these models on up to 4,096 A100s on cloud AWS infrastructure with limited interconnect. We release a 600B tokens extract of our web dataset, as well as the Falcon-7/40/180B models under a permissive license to foster open-science and accelerate the development of an open ecosystem of large language models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Networking · Performer · 統計量 ·
2024 年 1 月 22 日

Introduction Quantum Convolutional Neural Network (QCNN)-Long Short-Term Memory (LSTM) models were studied to provide sequential relationships for each timepoint in MRIs of patients with Multiple Sclerosis (MS). In this pilot study, we compared three QCNN-LSTM models for binary classification of MS disability benchmarked against classical neural network architectures. Our hypothesis is that quantum models will provide competitive performance. Methods Matrix Product State (MPS), reverse Multistate Entanglement Renormalization Ansatz (MERA), and Tree-Tensor Network (TTN) circuits were paired with LSTM layer to process near-annual MRI data of patients diagnosed with MS. These were benchmarked against a Visual Geometry Group (VGG)-LSTM and a Video Vision Transformer (ViViT). Predicted logits were measured against ground truth labels of each patient's Extended Disability Severity Score (EDSS) using binary cross-entropy loss. Training/validation/holdout testing was partitioned using 5-fold cross validation with a total split of 60:20:20. Levene's test of variance was used to measure statistical difference and Student's t-test for paired model differences in mean. Results The MPS-LSTM, reverse MERA-LSTM, and TTN-LSTM had holdout testing ROC-AUC of 0.70, 0.77, and 0.81, respectively (p-value 0.915). VGG16-LSTM and ViViT performed similarly with ROC-AUC of 0.73 and 0.77, respectively (p-value 0.631). Overall variance and mean were not statistically significant (p-value 0.713), however, time to train was significantly faster for the QCNN-LSTMs (39.4 sec per fold vs. 224 and 218, respectively, p-value <0.001). Conclusion QCNN-LSTM models perform competitively to their classical counterparts with greater efficiency in train time. Clinically, these can add value in terms of efficiency to time-dependent deep learning prediction of disease progression based upon medical imaging.

This paper introduces BWSNet, a model that can be trained from raw human judgements obtained through a Best-Worst scaling (BWS) experiment. It maps sound samples into an embedded space that represents the perception of a studied attribute. To this end, we propose a set of cost functions and constraints, interpreting trial-wise ordinal relations as distance comparisons in a metric learning task. We tested our proposal on data from two BWS studies investigating the perception of speech social attitudes and timbral qualities. For both datasets, our results show that the structure of the latent space is faithful to human judgements.

Online model selection involves selecting a model from a set of candidate models 'on the fly' to perform prediction on a stream of data. The choice of candidate models henceforth has a crucial impact on the performance. Although employing a larger set of candidate models naturally leads to more flexibility in model selection, this may be infeasible in cases where prediction tasks are performed on edge devices with limited memory. Faced with this challenge, the present paper proposes an online federated model selection framework where a group of learners (clients) interacts with a server with sufficient memory such that the server stores all candidate models. However, each client only chooses to store a subset of models that can be fit into its memory and performs its own prediction task using one of the stored models. Furthermore, employing the proposed algorithm, clients and the server collaborate to fine-tune models to adapt them to a non-stationary environment. Theoretical analysis proves that the proposed algorithm enjoys sub-linear regret with respect to the best model in hindsight. Experiments on real datasets demonstrate the effectiveness of the proposed algorithm.

Foundation models (FMs) are able to leverage large volumes of unlabeled data to demonstrate superior performance across a wide range of tasks. However, FMs developed for biomedical domains have largely remained unimodal, i.e., independently trained and used for tasks on protein sequences alone, small molecule structures alone, or clinical data alone. To overcome this limitation of biomedical FMs, we present BioBridge, a novel parameter-efficient learning framework, to bridge independently trained unimodal FMs to establish multimodal behavior. BioBridge achieves it by utilizing Knowledge Graphs (KG) to learn transformations between one unimodal FM and another without fine-tuning any underlying unimodal FMs. Our empirical results demonstrate that BioBridge can beat the best baseline KG embedding methods (on average by around 76.3%) in cross-modal retrieval tasks. We also identify BioBridge demonstrates out-of-domain generalization ability by extrapolating to unseen modalities or relations. Additionally, we also show that BioBridge presents itself as a general purpose retriever that can aid biomedical multimodal question answering as well as enhance the guided generation of novel drugs.

Diffusion models trained with mean squared error loss tend to generate unrealistic samples. Current state-of-the-art models rely on classifier-free guidance to improve sample quality, yet its surprising effectiveness is not fully understood. In this paper, we show that the effectiveness of classifier-free guidance partly originates from it being a form of implicit perceptual guidance. As a result, we can directly incorporate perceptual loss in diffusion training to improve sample quality. Since the score matching objective used in diffusion training strongly resembles the denoising autoencoder objective used in unsupervised training of perceptual networks, the diffusion model itself is a perceptual network and can be used to generate meaningful perceptual loss. We propose a novel self-perceptual objective that results in diffusion models capable of generating more realistic samples. For conditional generation, our method only improves sample quality without entanglement with the conditional input and therefore does not sacrifice sample diversity. Our method can also improve sample quality for unconditional generation, which was not possible with classifier-free guidance before.

Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from $\mathcal{O}(L^6)$ to $\mathcal{O}(L^3)$, where $L$ is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.

The rapid growth of transformer-based models increases the concerns about their integrity and ownership insurance. Watermarking addresses this issue by embedding a unique identifier into the model, while preserving its performance. However, most existing approaches require to optimize the weights to imprint the watermark signal, which is not suitable at scale due to the computational cost. This paper explores watermarks with virtually no computational cost, applicable to a non-blind white-box setting (assuming access to both the original and watermarked networks). They generate functionally equivalent copies by leveraging the models' invariance, via operations like dimension permutations or scaling/unscaling. This enables to watermark models without any change in their outputs and remains stealthy. Experiments demonstrate the effectiveness of the approach and its robustness against various model transformations (fine-tuning, quantization, pruning), making it a practical solution to protect the integrity of large models.

Although diffusion models (DMs) have shown promising performances in a number of tasks (e.g., speech synthesis and image generation), they might suffer from error propagation because of their sequential structure. However, this is not certain because some sequential models, such as Conditional Random Field (CRF), are free from this problem. To address this issue, we develop a theoretical framework to mathematically formulate error propagation in the architecture of DMs, The framework contains three elements, including modular error, cumulative error, and propagation equation. The modular and cumulative errors are related by the equation, which interprets that DMs are indeed affected by error propagation. Our theoretical study also suggests that the cumulative error is closely related to the generation quality of DMs. Based on this finding, we apply the cumulative error as a regularization term to reduce error propagation. Because the term is computationally intractable, we derive its upper bound and design a bootstrap algorithm to efficiently estimate the bound for optimization. We have conducted extensive experiments on multiple image datasets, showing that our proposed regularization reduces error propagation, significantly improves vanilla DMs, and outperforms previous baselines.

World models play a crucial role in understanding and predicting the dynamics of the world, which is essential for video generation. However, existing world models are confined to specific scenarios such as gaming or driving, limiting their ability to capture the complexity of general world dynamic environments. Therefore, we introduce WorldDreamer, a pioneering world model to foster a comprehensive comprehension of general world physics and motions, which significantly enhances the capabilities of video generation. Drawing inspiration from the success of large language models, WorldDreamer frames world modeling as an unsupervised visual sequence modeling challenge. This is achieved by mapping visual inputs to discrete tokens and predicting the masked ones. During this process, we incorporate multi-modal prompts to facilitate interaction within the world model. Our experiments show that WorldDreamer excels in generating videos across different scenarios, including natural scenes and driving environments. WorldDreamer showcases versatility in executing tasks such as text-to-video conversion, image-tovideo synthesis, and video editing. These results underscore WorldDreamer's effectiveness in capturing dynamic elements within diverse general world environments.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

北京阿比特科技有限公司