Most current multi-modal summarization methods follow a cascaded manner, where an off-the-shelf object detector is first used to extract visual features, then these features are fused with language representations to generate the summary with an encoder-decoder model. The cascaded way cannot capture the semantic alignments between images and paragraphs, which are crucial to a precise summary. In this paper, we propose ViL-Sum to jointly model paragraph-level \textbf{Vi}sion-\textbf{L}anguage Semantic Alignment and Multi-Modal \textbf{Sum}marization. The core of ViL-Sum is a joint multi-modal encoder with two well-designed tasks, image reordering and image selection. The joint multi-modal encoder captures the interactions between modalities, where the reordering task guides the model to learn paragraph-level semantic alignment and the selection task guides the model to selected summary-related images in the final summary. Experimental results show that our proposed ViL-Sum significantly outperforms current state-of-the-art methods. In further analysis, we find that two well-designed tasks and joint multi-modal encoder can effectively guide the model to learn reasonable paragraphs-images and summary-images relations.
In the paradigm of AI-generated content (AIGC), there has been increasing attention in extending pre-trained text-to-image (T2I) models to text-to-video (T2V) generation. Despite their effectiveness, these frameworks face challenges in maintaining consistent narratives and handling rapid shifts in scene composition or object placement from a single user prompt. This paper introduces a new framework, dubbed DirecT2V, which leverages instruction-tuned large language models (LLMs) to generate frame-by-frame descriptions from a single abstract user prompt. DirecT2V utilizes LLM directors to divide user inputs into separate prompts for each frame, enabling the inclusion of time-varying content and facilitating consistent video generation. To maintain temporal consistency and prevent object collapse, we propose a novel value mapping method and dual-softmax filtering. Extensive experimental results validate the effectiveness of the DirecT2V framework in producing visually coherent and consistent videos from abstract user prompts, addressing the challenges of zero-shot video generation.
Cross-lingual summarization consists of generating a summary in one language given an input document in a different language, allowing for the dissemination of relevant content across speakers of other languages. However, this task remains challenging, mainly because of the need for cross-lingual datasets and the compounded difficulty of summarizing and translating. This work presents $\mu$PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge. We formulate the plan as a sequence of entities that captures the conceptualization of the summary, i.e. identifying the salient content and expressing in which order to present the information, separate from the surface form. Using a multilingual knowledge base, we align the entities to their canonical designation across languages. $\mu$PLAN models first learn to generate the plan and then continue generating the summary conditioned on the plan and the input. We evaluate our methodology on the XWikis dataset on cross-lingual pairs across four languages and demonstrate that this planning objective achieves state-of-the-art performance in terms of ROUGE and faithfulness scores. Moreover, this planning approach improves the zero-shot transfer to new cross-lingual language pairs compared to non-planning baselines.
Recent text-to-image (T2I) diffusion models show outstanding performance in generating high-quality images conditioned on textual prompts. However, these models fail to semantically align the generated images with the text descriptions due to their limited compositional capabilities, leading to attribute leakage, entity leakage, and missing entities. In this paper, we propose a novel attention mask control strategy based on predicted object boxes to address these three issues. In particular, we first train a BoxNet to predict a box for each entity that possesses the attribute specified in the prompt. Then, depending on the predicted boxes, unique mask control is applied to the cross- and self-attention maps. Our approach produces a more semantically accurate synthesis by constraining the attention regions of each token in the prompt to the image. In addition, the proposed method is straightforward and effective, and can be readily integrated into existing cross-attention-diffusion-based T2I generators. We compare our approach to competing methods and demonstrate that it not only faithfully conveys the semantics of the original text to the generated content, but also achieves high availability as a ready-to-use plugin.
Humans have a natural ability to perform semantic associations with the surrounding objects in the environment. This allows them to create a mental map of the environment which helps them to navigate on-demand when given a linguistic instruction. A natural goal in Vision Language Navigation (VLN) research is to impart autonomous agents with similar capabilities. Recently introduced VL Maps \cite{huang23vlmaps} take a step towards this goal by creating a semantic spatial map representation of the environment without any labelled data. However, their representations are limited for practical applicability as they do not distinguish between different instances of the same object. In this work, we address this limitation by integrating instance-level information into spatial map representation using a community detection algorithm and by utilizing word ontology learned by large language models (LLMs) to perform open-set semantic associations in the mapping representation. The resulting map representation improves the navigation performance by two-fold (233\%) on realistic language commands with instance-specific descriptions compared to VL Maps. We validate the practicality and effectiveness of our approach through extensive qualitative and quantitative experiments.
The vanilla image completion approaches are sensitive to the large missing regions due to limited available reference information for plausible generation. To mitigate this, existing methods incorporate the extra cue as a guidance for image completion. Despite improvements, these approaches are often restricted to employing a single modality (e.g., segmentation or sketch maps), which lacks scalability in leveraging multi-modality for more plausible completion. In this paper, we propose a novel, simple yet effective method for Multi-modal Guided Image Completion, dubbed MaGIC, which not only supports a wide range of single modality as the guidance (e.g., text, canny edge, sketch, segmentation, reference image, depth, and pose), but also adapts to arbitrarily customized combination of these modalities (i.e., arbitrary multi-modality) for image completion. For building MaGIC, we first introduce a modality-specific conditional U-Net (MCU-Net) that injects single-modal signal into a U-Net denoiser for single-modal guided image completion. Then, we devise a consistent modality blending (CMB) method to leverage modality signals encoded in multiple learned MCU-Nets through gradient guidance in latent space. Our CMB is training-free, and hence avoids the cumbersome joint re-training of different modalities, which is the secret of MaGIC to achieve exceptional flexibility in accommodating new modalities for completion. Experiments show the superiority of MaGIC over state-of-arts and its generalization to various completion tasks including in/out-painting and local editing. Our project with code and models is available at yeates.github.io/MaGIC-Page/.
Despite the availability of computer-aided simulators and recorded videos of surgical procedures, junior residents still heavily rely on experts to answer their queries. However, expert surgeons are often overloaded with clinical and academic workloads and limit their time in answering. For this purpose, we develop a surgical question-answering system to facilitate robot-assisted surgical scene and activity understanding from recorded videos. Most of the existing VQA methods require an object detector and regions based feature extractor to extract visual features and fuse them with the embedded text of the question for answer generation. However, (1) surgical object detection model is scarce due to smaller datasets and lack of bounding box annotation; (2) current fusion strategy of heterogeneous modalities like text and image is naive; (3) the localized answering is missing, which is crucial in complex surgical scenarios. In this paper, we propose Visual Question Localized-Answering in Robotic Surgery (Surgical-VQLA) to localize the specific surgical area during the answer prediction. To deal with the fusion of the heterogeneous modalities, we design gated vision-language embedding (GVLE) to build input patches for the Language Vision Transformer (LViT) to predict the answer. To get localization, we add the detection head in parallel with the prediction head of the LViT. We also integrate GIoU loss to boost localization performance by preserving the accuracy of the question-answering model. We annotate two datasets of VQLA by utilizing publicly available surgical videos from MICCAI challenges EndoVis-17 and 18. Our validation results suggest that Surgical-VQLA can better understand the surgical scene and localize the specific area related to the question-answering. GVLE presents an efficient language-vision embedding technique by showing superior performance over the existing benchmarks.
Image-to-image translation (I2I) aims to transfer images from a source domain to a target domain while preserving the content representations. I2I has drawn increasing attention and made tremendous progress in recent years because of its wide range of applications in many computer vision and image processing problems, such as image synthesis, segmentation, style transfer, restoration, and pose estimation. In this paper, we provide an overview of the I2I works developed in recent years. We will analyze the key techniques of the existing I2I works and clarify the main progress the community has made. Additionally, we will elaborate on the effect of I2I on the research and industry community and point out remaining challenges in related fields.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.