亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Visual Place Recognition (VPR) aims to retrieve frames from a geotagged database that are located at the same place as the query frame. To improve the robustness of VPR in perceptually aliasing scenarios, sequence-based VPR methods are proposed. These methods are either based on matching between frame sequences or extracting sequence descriptors for direct retrieval. However, the former is usually based on the assumption of constant velocity, which is difficult to hold in practice, and is computationally expensive and subject to sequence length. Although the latter overcomes these problems, existing sequence descriptors are constructed by aggregating features of multiple frames only, without interaction on temporal information, and thus cannot obtain descriptors with spatio-temporal discrimination. In this paper, we propose a sequence descriptor that effectively incorporates spatio-temporal information. Specifically, spatial attention within the same frame is utilized to learn spatial feature patterns, while attention in corresponding local regions of different frames is utilized to learn the persistence or change of features over time. We use a sliding window to control the temporal range of attention and use relative position encoding to construct sequential relationships between different features. This allows our descriptors to capture the intrinsic dynamics in a sequence of frames. Comprehensive experiments on challenging benchmark datasets show that the proposed approach outperforms recent state-of-the-art methods.

相關內容

We introduce a new approach to address the task allocation problem in a system of heterogeneous robots comprising of Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs). The proposed model, \texttt{\method}, or \textbf{G}raph \textbf{A}ttention \textbf{T}ask \textbf{A}llocato\textbf{R} aggregates information from neighbors in the multi-robot system, with the aim of achieving joint optimality in the target localization efficiency.Being decentralized, our method is highly robust and adaptable to situations where collaborators may change over time, ensuring the continuity of the mission. We also proposed heterogeneity-aware preprocessing to let all the different types of robots collaborate with a uniform model.The experimental results demonstrate the effectiveness and scalability of the proposed approach in a range of simulated scenarios. The model can allocate targets' positions close to the expert algorithm's result, with a median spatial gap less than a unit length. This approach can be used in multi-robot systems deployed in search and rescue missions, environmental monitoring, and disaster response.

Contemporary time series data often feature objects connected by a social network that naturally induces temporal dependence involving connected neighbours. The network vector autoregressive model is useful for describing the influence of linked neighbours, while recent generalizations aim to separate influence and homophily. Existing approaches, however, require either correct specification of a time series model or accurate estimation of a network model or both, and rely exclusively on least-squares for parameter estimation. This paper proposes a new autoregressive model incorporating a flexible form for latent variables used to depict homophily. We develop a first-order differencing method for the estimation of influence requiring only the influence part of the model to be correctly specified. When the part including homophily is correctly specified admitting a semiparametric form, we leverage and generalize the recent notion of neighbour smoothing for parameter estimation, bypassing the need to specify the generative mechanism of the network. We develop new theory to show that all the estimated parameters are consistent and asymptotically normal. The efficacy of our approach is confirmed via extensive simulations and an analysis of a social media dataset.

We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training. Interfering with the learning process during this initial stage can permanently impair the development of a skill, both in artificial and biological systems where the phenomenon is known as a critical learning period. We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations. This evidence challenges the view, engendered by analysis of wide and shallow networks, that early learning dynamics of neural networks are simple, akin to those of a linear model. Indeed, we show that even deep linear networks exhibit critical learning periods for multi-source integration, while shallow networks do not. To better understand how the internal representations change according to disturbances or sensory deficits, we introduce a new measure of source sensitivity, which allows us to track the inhibition and integration of sources during training. Our analysis of inhibition suggests cross-source reconstruction as a natural auxiliary training objective, and indeed we show that architectures trained with cross-sensor reconstruction objectives are remarkably more resilient to critical periods. Our findings suggest that the recent success in self-supervised multi-modal training compared to previous supervised efforts may be in part due to more robust learning dynamics and not solely due to better architectures and/or more data.

In the presence of right-censored data with covariates, the conditional Kaplan-Meier estimator (also known as the Beran estimator) consistently estimates the conditional survival function of the random follow-up for the event of interest. However, a necessary condition is the unambiguous knowledge of whether each individual is censored or not, which may be incomplete in practice. We therefore propose a study of the Beran estimator when the censoring indicators are generic random variables and discuss necessary conditions for the efficiency of the Beran estimator. From this, we provide a new estimator for the conditional survival function with missing not at random (MNAR) censoring indicators based on a conditional copula model for the missingness mechanism. In addition to the theoretical results, we illustrate how the estimators work for small samples through a simulation study and show their practical applicability by analyzing synthetic and real data.

Knowledge Graphs (KGs) often have two characteristics: heterogeneous graph structure and text-rich entity/relation information. Text-based KG embeddings can represent entities by encoding descriptions with pre-trained language models, but no open-sourced library is specifically designed for KGs with PLMs at present. In this paper, we present LambdaKG, a library for KGE that equips with many pre-trained language models (e.g., BERT, BART, T5, GPT-3), and supports various tasks (e.g., knowledge graph completion, question answering, recommendation, and knowledge probing). LambdaKG is publicly open-sourced at //github.com/zjunlp/PromptKG/tree/main/lambdaKG, with a demo video at //deepke.zjukg.cn/lambdakg.mp4 and long-term maintenance.

Despite their impressive performance in a wide range of NLP tasks, Large Language Models (LLMs) have been reported to encode worrying-levels of gender bias. Prior work has proposed debiasing methods that require human labelled examples, data augmentation and fine-tuning of the LLMs, which are computationally costly. Moreover, one might not even have access to the internal parameters for performing debiasing such as in the case of commercially available LLMs such as GPT-4. To address this challenge we propose bias suppression, a novel alternative to debiasing that does not require access to model parameters. We show that text-based preambles, generated from manually designed templates covering counterfactual statements, can accurately suppress gender biases in LLMs. Moreover, we find that descriptive sentences for occupations can further suppress gender biases. Interestingly, we find that bias suppression has a minimal adverse effect on downstream task performance, while effectively mitigating the gender biases.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司