亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Customer feedback is invaluable to companies as they refine their products. Monitoring customer feedback can be automated with Aspect Level Sentiment Classification (ALSC) which allows us to analyse specific aspects of the products in reviews. Large Language Models (LLMs) are the heart of many state-of-the-art ALSC solutions, but they perform poorly in some scenarios requiring Coreference Resolution (CR). In this work, we propose a framework to improve an LLM's performance on CR-containing reviews by fine tuning on highly inferential tasks. We show that the performance improvement is likely attributed to the improved model CR ability. We also release a new dataset that focuses on CR in ALSC.

相關內容

Estimating new HIV infections is significant yet challenging due to the difficulty in distinguishing between recent and long-term infections. We demonstrate that HIV recency status (recent v.s. long-term) could be determined from the combination of self-report testing history and biomarkers, which are increasingly available in bio-behavioral surveys. HIV recency status is partially observed, given the self-report testing history. For example, people who tested positive for HIV over one year ago should have a long-term infection. Based on the nationally representative samples collected by the Population-based HIV Impact Assessment (PHIA) Project, we propose a likelihood-based probabilistic model for HIV recency classification. The model incorporates both labeled and unlabeled data and integrates the mechanism of how HIV recency status depends on biomarkers and the mechanism of how HIV recency status, together with the self-report time of the most recent HIV test, impacts the test results, via a set of logistic regression models. We compare our method to logistic regression and the binary classification tree (current practice) on Malawi, Zimbabwe, and Zambia PHIA data, as well as on simulated data. Our model obtains more efficient and less biased parameter estimates and is relatively robust to potential reporting error and model misspecification.

Phishing websites distribute unsolicited content and are frequently used to commit email and internet fraud; detecting them before any user information is submitted is critical. Several efforts have been made to detect these phishing websites in recent years. Most existing approaches use hand-crafted lexical and statistical features from a website's textual content to train classification models to detect phishing web pages. However, these phishing detection approaches have a few challenges, including 1) the tediousness of extracting hand-crafted features, which require specialized domain knowledge to determine which features are useful for a particular platform; and 2) the difficulties encountered by models built on hand-crafted features to capture the semantic patterns in words and characters in URL and HTML content. To address these challenges, this paper proposes WebPhish, an end-to-end deep neural network trained using embedded raw URLs and HTML content to detect website phishing attacks. First, the proposed model automatically employs an embedding technique to extract the corresponding characters into homologous dense vectors. Then, the concatenation layer merges the URL and HTML embedding matrices. Following that, Convolutional layers are used to model its semantic dependencies. Extensive experiments were conducted with real-world phishing data, which yielded an accuracy of 98.1\%, showing that WebPhish outperforms baseline detection approaches in identifying phishing pages.

Dietary assessment is essential to maintaining a healthy lifestyle. Automatic image-based dietary assessment is a growing field of research due to the increasing prevalence of image capturing devices (e.g. mobile phones). In this work, we estimate food energy from a single monocular image, a difficult task due to the limited hard-to-extract amount of energy information present in an image. To do so, we employ an improved encoder-decoder framework for energy estimation; the encoder transforms the image into a representation embedded with food energy information in an easier-to-extract format, which the decoder then extracts the energy information from. To implement our method, we compile a high-quality food image dataset verified by registered dietitians containing eating scene images, food-item segmentation masks, and ground truth calorie values. Our method improves upon previous caloric estimation methods by over 10\% and 30 kCal in terms of MAPE and MAE respectively.

How to get insights from relational data streams in a timely manner is a hot research topic. This type of data stream can present unique challenges, such as distribution drifts, outliers, emerging classes, and changing features, which have recently been described as open environment challenges for machine learning. While existing studies have been done on incremental learning for data streams, their evaluations are mostly conducted with manually partitioned datasets. Thus, a natural question is how those open environment challenges look like in real-world relational data streams and how existing incremental learning algorithms perform on real datasets. To fill this gap, we develop an Open Environment Benchmark named OEBench to evaluate open environment challenges in relational data streams. Specifically, we investigate 55 real-world relational data streams and establish that open environment scenarios are indeed widespread in real-world datasets, which presents significant challenges for stream learning algorithms. Through benchmarks with existing incremental learning algorithms, we find that increased data quantity may not consistently enhance the model accuracy when applied in open environment scenarios, where machine learning models can be significantly compromised by missing values, distribution shifts, or anomalies in real-world data streams. The current techniques are insufficient in effectively mitigating these challenges posed by open environments. More researches are needed to address real-world open environment challenges. All datasets and code are open-sourced in //github.com/sjtudyq/OEBench.

Users derive value from a recommender system (RS) only to the extent that it is able to surface content (or items) that meet their needs/preferences. While RSs often have a comprehensive view of user preferences across the entire user base, content providers, by contrast, generally have only a local view of the preferences of users that have interacted with their content. This limits a provider's ability to offer new content to best serve the broader population. In this work, we tackle this information asymmetry with content prompting policies. A content prompt is a hint or suggestion to a provider to make available novel content for which the RS predicts unmet user demand. A prompting policy is a sequence of such prompts that is responsive to the dynamics of a provider's beliefs, skills and incentives. We aim to determine a joint prompting policy that induces a set of providers to make content available that optimizes user social welfare in equilibrium, while respecting the incentives of the providers themselves. Our contributions include: (i) an abstract model of the RS ecosystem, including content provider behaviors, that supports such prompting; (ii) the design and theoretical analysis of sequential prompting policies for individual providers; (iii) a mixed integer programming formulation for optimal joint prompting using path planning in content space; and (iv) simple, proof-of-concept experiments illustrating how such policies improve ecosystem health and user welfare.

Model errors are pervasive and can be catastrophic. We can reduce model errors and time to market by applying Component-Based Software Engineering (CBSE) concepts to Excel models. CBSE assembles solutions from pre-built, pre-tested components rather than written from formulas. This is made possible by the introduction of LAMBDA. LAMBDA is an Excel function that creates functions from Excel's formulas. CBSE-compliant LAMBDA functions can be reused in any project just like any Excel function. They also look exactly like Excel's native functions such as SUM(). This makes it possible for even junior modelers to leverage CBSE-compliant LAMBDAs to develop models quicker with fewer errors.

Bayes estimators are well known to provide a means to incorporate prior knowledge that can be expressed in terms of a single prior distribution. However, when this knowledge is too vague to express with a single prior, an alternative approach is needed. Gamma-minimax estimators provide such an approach. These estimators minimize the worst-case Bayes risk over a set $\Gamma$ of prior distributions that are compatible with the available knowledge. Traditionally, Gamma-minimaxity is defined for parametric models. In this work, we define Gamma-minimax estimators for general models and propose adversarial meta-learning algorithms to compute them when the set of prior distributions is constrained by generalized moments. Accompanying convergence guarantees are also provided. We also introduce a neural network class that provides a rich, but finite-dimensional, class of estimators from which a Gamma-minimax estimator can be selected. We illustrate our method in two settings, namely entropy estimation and a prediction problem that arises in biodiversity studies.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

北京阿比特科技有限公司