亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning models are typically deployed in a test setting that differs from the training setting, potentially leading to decreased model performance because of domain shift. If we could estimate the performance that a pre-trained model would achieve on data from a specific deployment setting, for example a certain clinic, we could judge whether the model could safely be deployed or if its performance degrades unacceptably on the specific data. Existing approaches estimate this based on the confidence of predictions made on unlabeled test data from the deployment's domain. We find existing methods struggle with data that present class imbalance, because the methods used to calibrate confidence do not account for bias induced by class imbalance, consequently failing to estimate class-wise accuracy. Here, we introduce class-wise calibration within the framework of performance estimation for imbalanced datasets. Specifically, we derive class-specific modifications of state-of-the-art confidence-based model evaluation methods including temperature scaling (TS), difference of confidences (DoC), and average thresholded confidence (ATC). We also extend the methods to estimate Dice similarity coefficient (DSC) in image segmentation. We conduct experiments on four tasks and find the proposed modifications consistently improve the estimation accuracy for imbalanced datasets. Our methods improve accuracy estimation by 18\% in classification under natural domain shifts, and double the estimation accuracy on segmentation tasks, when compared with prior methods.

相關內容

Real human conversation data are complicated, heterogeneous, and noisy, from which building open-domain dialogue systems remains a challenging task. In fact, such dialogue data still contains a wealth of information and knowledge, however, they are not fully explored. In this paper, we show existing open-domain dialogue generation methods that memorize context-response paired data with autoregressive or encode-decode language models underutilize the training data. Different from current approaches, using external knowledge, we explore a retrieval-generation training framework that can take advantage of the heterogeneous and noisy training data by considering them as "evidence". In particular, we use BERTScore for retrieval, which gives better qualities of the evidence and generation. Experiments over publicly available datasets demonstrate that our method can help models generate better responses, even such training data are usually impressed as low-quality data. Such performance gain is comparable with those improved by enlarging the training set, even better. We also found that the model performance has a positive correlation with the relevance of the retrieved evidence. Moreover, our method performed well on zero-shot experiments, which indicates that our method can be more robust to real-world data.

This paper investigates the post-hoc calibration of confidence for "exploratory" machine learning classification problems. The difficulty in these problems stems from the continuing desire to push the boundaries of which categories have enough examples to generalize from when curating datasets, and confusion regarding the validity of those categories. We argue that for such problems the "one-versus-all" approach (top-label calibration) must be used rather than the "calibrate-the-full-response-matrix" approach advocated elsewhere in the literature. We introduce and test four new algorithms designed to handle the idiosyncrasies of category-specific confidence estimation. Chief among these methods is the use of kernel density ratios for confidence calibration including a novel, bulletproof algorithm for choosing the bandwidth. We test our claims and explore the limits of calibration on a bioinformatics application (PhANNs) as well as the classic MNIST benchmark. Finally, our analysis argues that post-hoc calibration should always be performed, should be based only on the test dataset, and should be sanity-checked visually.

Noisy labels in large E-commerce product data (i.e., product items are placed into incorrect categories) are a critical issue for product categorization task because they are unavoidable, non-trivial to remove and degrade prediction performance significantly. Training a product title classification model which is robust to noisy labels in the data is very important to make product classification applications more practical. In this paper, we study the impact of instance-dependent noise to performance of product title classification by comparing our data denoising algorithm and different noise-resistance training algorithms which were designed to prevent a classifier model from over-fitting to noise. We develop a simple yet effective Deep Neural Network for product title classification to use as a base classifier. Along with recent methods of stimulating instance-dependent noise, we propose a novel noise stimulation algorithm based on product title similarity. Our experiments cover multiple datasets, various noise methods and different training solutions. Results uncover the limit of classification task when noise rate is not negligible and data distribution is highly skewed.

Visual place recognition techniques based on deep learning, which have imposed themselves as the state-of-the-art in recent years, do not generalize well to environments visually different from the training set. Thus, to achieve top performance, it is sometimes necessary to fine-tune the networks to the target environment. To this end, we propose a self-supervised domain calibration procedure based on robust pose graph optimization from Simultaneous Localization and Mapping (SLAM) as the supervision signal without requiring GPS or manual labeling. Moreover, we leverage the procedure to improve uncertainty estimation for place recognition matches which is important in safety critical applications. We show that our approach can improve the performance of a state-of-the-art technique on a target environment dissimilar from its training set and that we can obtain uncertainty estimates. We believe that this approach will help practitioners to deploy robust place recognition solutions in real-world applications. Our code is available publicly: //github.com/MISTLab/vpr-calibration-and-uncertainty

Model fine-tuning and adaptation have become a common approach for model specialization for downstream tasks or domains. Fine-tuning the entire model or a subset of the parameters using light-weight adaptation has shown considerable success across different specialization tasks. Fine-tuning a model for a large number of domains typically requires starting a new training job for every domain posing scaling limitations. Once these models are trained, deploying them also poses significant scalability challenges for inference for real-time applications. In this paper, building upon prior light-weight adaptation techniques, we propose a modular framework that enables us to substantially improve scalability for model training and inference. We introduce Submodels that can be quickly and dynamically loaded for on-the-fly inference. We also propose multiple approaches for training those Submodels in parallel using an embedding space in the same training job. We test our framework on an extreme use-case which is speech model personalization for atypical speech, requiring a Submodel for each user. We obtain 128x Submodel throughput with a fixed computation budget without a loss of accuracy. We also show that learning a speaker-embedding space can scale further and reduce the amount of personalization training data required per speaker.

Recent deep learning approaches for multi-view depth estimation are employed either in a depth-from-video or a multi-view stereo setting. Despite different settings, these approaches are technically similar: they correlate multiple source views with a keyview to estimate a depth map for the keyview. In this work, we introduce the Robust Multi-View Depth Benchmark that is built upon a set of public datasets and allows evaluation in both settings on data from different domains. We evaluate recent approaches and find imbalanced performances across domains. Further, we consider a third setting, where camera poses are available and the objective is to estimate the corresponding depth maps with their correct scale. We show that recent approaches do not generalize across datasets in this setting. This is because their cost volume output runs out of distribution. To resolve this, we present the Robust MVD Baseline model for multi-view depth estimation, which is built upon existing components but employs a novel scale augmentation procedure. It can be applied for robust multi-view depth estimation, independent of the target data. We provide code for the proposed benchmark and baseline model at //github.com/lmb-freiburg/robustmvd.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司