亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D speech enhancement can effectively improve the auditory experience and plays a crucial role in augmented reality technology. However, traditional convolutional-based speech enhancement methods have limitations in extracting dynamic voice information. In this paper, we incorporate a dual-path recurrent neural network block into the U-Net to iteratively extract dynamic audio information in both the time and frequency domains. And an attention mechanism is proposed to fuse the original signal, reference signal, and generated masks. Moreover, we introduce a loss function to simultaneously optimize the network in the time-frequency and time domains. Experimental results show that our system outperforms the state-of-the-art systems on the dataset of ICASSP L3DAS23 challenge.

相關內容

語(yu)音增(zeng)強是指(zhi)當語(yu)音信號被各(ge)種各(ge)樣的(de)噪聲干(gan)擾、甚至淹沒后(hou),從噪聲背景中(zhong)提(ti)取有用(yong)的(de)語(yu)音信號,抑制、降低噪聲干(gan)擾的(de)技術(shu)。一句話,從含噪語(yu)音中(zhong)提(ti)取盡可(ke)能純凈(jing)的(de)原(yuan)始語(yu)音。

Video post-processing methods can improve the quality of compressed videos at the decoder side. Most of the existing methods need to train corresponding models for compressed videos with different quantization parameters to improve the quality of compressed videos. However, in most cases, the quantization parameters of the decoded video are unknown. This makes existing methods have their limitations in improving video quality. To tackle this problem, this work proposes a diffusion model based post-processing method for compressed videos. The proposed method first estimates the feature vectors of the compressed video and then uses the estimated feature vectors as the prior information for the quality enhancement model to adaptively enhance the quality of compressed video with different quantization parameters. Experimental results show that the quality enhancement results of our proposed method on mixed datasets are superior to existing methods.

Data uncertainties, such as sensor noise or occlusions, can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. Latent density models can be utilized to address this problem in image segmentation. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU- Net latent space is severely inhomogenous. As a result, the effectiveness of gradient descent is inhibited and the model becomes extremely sensitive to the localization of the latent space samples, resulting in defective predictions. To address this, we present the Sinkhorn PU-Net (SPU-Net), which uses the Sinkhorn Divergence to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and model robustness. Our results show that by applying this on public datasets of various clinical segmentation problems, the SPU-Net receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched metric. The results indicate that by encouraging a homogeneous latent space, one can significantly improve latent density modeling for medical image segmentation.

Recent advances in whole-slide image (WSI) scanners and computational capabilities have significantly propelled the application of artificial intelligence in histopathology slide analysis. While these strides are promising, current supervised learning approaches for WSI analysis come with the challenge of exhaustively labeling high-resolution slides - a process that is both labor-intensive and time-consuming. In contrast, self-supervised learning (SSL) pretraining strategies are emerging as a viable alternative, given that they don't rely on explicit data annotations. These SSL strategies are quickly bridging the performance disparity with their supervised counterparts. In this context, we introduce an SSL framework. This framework aims for transferable representation learning and semantically meaningful clustering by synergizing invariance loss and clustering loss in WSI analysis. Notably, our approach outperforms common SSL methods in downstream classification and clustering tasks, as evidenced by tests on the Camelyon16 and a pancreatic cancer dataset.

Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.

Temporal action detection aims to recognize the action category and determine the starting and ending time of each action instance in untrimmed videos. The mixed methods have achieved remarkable performance by simply merging anchor-based and anchor-free approaches. However, there are still two crucial issues in the mixed framework: (1) Brute-force merging and handcrafted anchors design affect the performance and practical application of the mixed methods. (2) A large number of false positives in action category predictions further impact the detection performance. In this paper, we propose a novel Boundary Discretization and Reliable Classification Network (BDRC-Net) that addresses the above issues by introducing boundary discretization and reliable classification modules. Specifically, the boundary discretization module (BDM) elegantly merges anchor-based and anchor-free approaches in the form of boundary discretization, avoiding the handcrafted anchors design required by traditional mixed methods. Furthermore, the reliable classification module (RCM) predicts reliable action categories to reduce false positives in action category predictions. Extensive experiments conducted on different benchmarks demonstrate that our proposed method achieves favorable performance compared with the state-of-the-art. For example, BDRC-Net hits an average mAP of 68.6% on THUMOS'14, outperforming the previous best by 1.5%. The code will be released at //github.com/zhenyingfang/BDRC-Net.

Effectively specifying and implementing robotic missions poses a set of challenges to software engineering for robotic systems. These challenges stem from the need to formalize and execute a robot's high-level tasks while considering various application scenarios and conditions, also known as contexts, in real-world operational environments. Writing correct mission specifications that explicitly account for multiple contexts can be tedious and error-prone. Furthermore, as the number of contexts, and consequently the complexity of the specification, increases, generating a correct-by-construction implementation (e.g., by using synthesis methods) can become intractable. A viable approach to address these issues is to decompose the mission specification into smaller, manageable sub-missions, with each sub-mission tailored to a specific context. Nevertheless, this compositional approach introduces its own set of challenges in ensuring the overall mission's correctness. In this paper, we propose a novel compositional framework for specifying and implementing contextual robotic missions using assume-guarantee contracts. The mission specification is structured in a hierarchical and modular fashion, allowing for each sub-mission to be synthesized as an independent robot controller. We address the problem of dynamically switching between sub-mission controllers while ensuring correctness under predefined conditions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司