亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In biomedical studies, longitudinal processes are collected till time-to-event, sometimes on nested timescales (example, days within months). Most of the literature in joint modeling of longitudinal and time-to-event data has focused on modeling the mean or dispersion of the longitudinal process with the hazard for time-to-event. However, based on the motivating studies, it may be of interest to investigate how the cycle-level {\it geometric features} (such as the curvature, location and height of a peak), of a cyclical longitudinal process is associated with the time-to-event being studied. We propose a shared parameter joint model for a cyclical longitudinal process and a discrete survival time, measured on nested timescales, where the cycle-varying geometric feature is modeled through a linear mixed effects model and a proportional hazards model for the discrete survival time. The proposed approach allows for prediction of survival probabilities for future subjects based on their available longitudinal measurements. Our proposed model and approach is illustrated through simulation and analysis of Stress and Time-to-Pregnancy, a component of Oxford Conception Study. A joint modeling approach was used to assess whether the cycle-specific geometric features of the lutenizing hormone measurements, such as its peak or its curvature, are associated with time-to-pregnancy (TTP).

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 評論員 · · Networking · Learning ·
2023 年 9 月 8 日

We develop a new policy gradient and actor-critic algorithm for solving mean-field control problems within a continuous time reinforcement learning setting. Our approach leverages a gradient-based representation of the value function, employing parametrized randomized policies. The learning for both the actor (policy) and critic (value function) is facilitated by a class of moment neural network functions on the Wasserstein space of probability measures, and the key feature is to sample directly trajectories of distributions. A central challenge addressed in this study pertains to the computational treatment of an operator specific to the mean-field framework. To illustrate the effectiveness of our methods, we provide a comprehensive set of numerical results. These encompass diverse examples, including multi-dimensional settings and nonlinear quadratic mean-field control problems with controlled volatility.

The semi-empirical nature of best-estimate models closing the balance equations of thermal-hydraulic (TH) system codes is well-known as a significant source of uncertainty for accuracy of output predictions. This uncertainty, called model uncertainty, is usually represented by multiplicative (log-)Gaussian variables whose estimation requires solving an inverse problem based on a set of adequately chosen real experiments. One method from the TH field, called CIRCE, addresses it. We present in the paper a generalization of this method to several groups of experiments each having their own properties, including different ranges for input conditions and different geometries. An individual (log-)Gaussian distribution is therefore estimated for each group in order to investigate whether the model uncertainty is homogeneous between the groups, or should depend on the group. To this end, a multi-group CIRCE is proposed where a variance parameter is estimated for each group jointly to a mean parameter common to all the groups to preserve the uniqueness of the best-estimate model. The ECME algorithm for Maximum Likelihood Estimation is adapted to the latter context, then applied to relevant demonstration cases. Finally, it is tested on a practical case to assess the uncertainty of critical mass flow assuming two groups due to the difference of geometry between the experimental setups.

Judging whether an integer can be divided by prime numbers such as 2 or 3 may appear trivial to human beings, but can be less straightforward for computers. Here, we tested multiple deep learning architectures and feature engineering approaches on classifying integers based on their residues when divided by small prime numbers. We found that the ability of classification critically depends on the feature space. We also evaluated Automated Machine Learning (AutoML) platforms from Amazon, Google and Microsoft, and found that they failed on this task without appropriately engineered features. Furthermore, we introduced a method that utilizes linear regression on Fourier series basis vectors, and demonstrated its effectiveness. Finally, we evaluated Large Language Models (LLMs) such as GPT-4, GPT-J, LLaMA and Falcon, and demonstrated their failures. In conclusion, feature engineering remains an important task to improve performance and increase interpretability of machine-learning models, even in the era of AutoML and LLMs.

In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.

Multiagent systems aim to accomplish highly complex learning tasks through decentralised consensus seeking dynamics and their use has garnered a great deal of attention in the signal processing and computational intelligence societies. This article examines the behaviour of multiagent networked systems with nonlinear filtering/learning dynamics. To this end, a general formulation for the actions of an agent in multiagent networked systems is presented and conditions for achieving a cohesive learning behaviour is given. Importantly, application of the so derived framework in distributed and federated learning scenarios are presented.

We applied physics-informed neural networks to solve the constitutive relations for nonlinear, path-dependent material behavior. As a result, the trained network not only satisfies all thermodynamic constraints but also instantly provides information about the current material state (i.e., free energy, stress, and the evolution of internal variables) under any given loading scenario without requiring initial data. One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models. Additionally, strategies are provided to reduce the required order of derivative for obtaining the tangent operator. The trained model can be directly used in any finite element package (or other numerical methods) as a user-defined material model. However, challenges remain in the proper definition of collocation points and in integrating several non-equality constraints that become active or non-active simultaneously. We tested this methodology on rate-independent processes such as the classical von Mises plasticity model with a nonlinear hardening law, as well as local damage models for interface cracking behavior with a nonlinear softening law. In order to demonstrate the applicability of the methodology in handling complex path dependency in a three-dimensional (3D) scenario, we tested the approach using the equations governing a damage model for a three-dimensional interface model. Such models are frequently employed for intergranular fracture at grain boundaries. We have observed a perfect agreement between the results obtained through the proposed methodology and those obtained using the classical approach. Furthermore, the proposed approach requires significantly less effort in terms of implementation and computing time compared to the traditional methods.

We prove a discrete analogue for the composition of the fractional integral and Caputo derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evaluation of the discrete sums with the use of the Euler-Maclaurin summation formula.

Recently, quantum computing experiments have for the first time exceeded the capability of classical computers to perform certain computations -- a milestone termed "quantum computational advantage." However, verifying the output of the quantum device in these experiments required extremely large classical computations. An exciting next step for demonstrating quantum capability would be to implement tests of quantum computational advantage with efficient classical verification, such that larger system sizes can be tested and verified. One of the first proposals for an efficiently-verifiable test of quantumness consists of hiding a secret classical bitstring inside a circuit of the class IQP, in such a way that samples from the circuit's output distribution are correlated with the secret (arXiv:0809.0847). The classical hardness of this protocol has been supported by evidence that directly simulating IQP circuits is hard, but the security of the protocol against other (non-simulating) classical attacks has remained an open question. In this work we demonstrate that the protocol is not secure against classical forgery. We describe a classical algorithm that can not only convince the verifier that the (classical) prover is quantum, but can in fact can extract the secret key underlying a given protocol instance. Furthermore, we show that the key extraction algorithm is efficient in practice for problem sizes of hundreds of qubits. Finally, we provide an implementation of the algorithm, and give the secret vector underlying the "$25 challenge" posted online by the authors of the original paper.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司