亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural encoder-decoder models of machine translation have achieved impressive results, while learning linguistic knowledge of both the source and target languages in an implicit end-to-end manner. We propose a framework in which our model begins learning syntax and translation interleaved, gradually putting more focus on translation. Using this approach, we achieve considerable improvements in terms of BLEU score on relatively large parallel corpus (WMT14 English to German) and a low-resource (WIT German to English) setup.

相關內容

多(duo)任(ren)(ren)務(wu)學(xue)(xue)習(xi)(MTL)是機器(qi)學(xue)(xue)習(xi)的(de)一個子領(ling)域,可(ke)以(yi)同時(shi)解決多(duo)個學(xue)(xue)習(xi)任(ren)(ren)務(wu),同時(shi)利用各個任(ren)(ren)務(wu)之間的(de)共性(xing)和(he)差(cha)異(yi)。與單獨訓練(lian)(lian)模型相比,這可(ke)以(yi)提高(gao)特定任(ren)(ren)務(wu)模型的(de)學(xue)(xue)習(xi)效率和(he)預(yu)測(ce)準確性(xing)。多(duo)任(ren)(ren)務(wu)學(xue)(xue)習(xi)是歸納傳遞的(de)一種方法,它通過將(jiang)相關任(ren)(ren)務(wu)的(de)訓練(lian)(lian)信號中(zhong)包(bao)含(han)的(de)域信息(xi)用作歸納偏差(cha)來(lai)提高(gao)泛化能力。通過使(shi)用共享(xiang)表(biao)示形式并行(xing)學(xue)(xue)習(xi)任(ren)(ren)務(wu)來(lai)實現,每(mei)個任(ren)(ren)務(wu)所學(xue)(xue)的(de)知識(shi)可(ke)以(yi)幫助更好地學(xue)(xue)習(xi)其它任(ren)(ren)務(wu)。

Generating natural language requires conveying content in an appropriate style. We explore two related tasks on generating text of varying formality: monolingual formality transfer and formality-sensitive machine translation. We propose to solve these tasks jointly using multi-task learning, and show that our models achieve state-of-the-art performance for formality transfer and are able to perform formality-sensitive translation without being explicitly trained on style-annotated translation examples.

Machine translation systems require semantic knowledge and grammatical understanding. Neural machine translation (NMT) systems often assume this information is captured by an attention mechanism and a decoder that ensures fluency. Recent work has shown that incorporating explicit syntax alleviates the burden of modeling both types of knowledge. However, requiring parses is expensive and does not explore the question of what syntax a model needs during translation. To address both of these issues we introduce a model that simultaneously translates while inducing dependency trees. In this way, we leverage the benefits of structure while investigating what syntax NMT must induce to maximize performance. We show that our dependency trees are 1. language pair dependent and 2. improve translation quality.

Standard machine translation systems process sentences in isolation and hence ignore extra-sentential information, even though extended context can both prevent mistakes in ambiguous cases and improve translation coherence. We introduce a context-aware neural machine translation model designed in such way that the flow of information from the extended context to the translation model can be controlled and analyzed. We experiment with an English-Russian subtitles dataset, and observe that much of what is captured by our model deals with improving pronoun translation. We measure correspondences between induced attention distributions and coreference relations and observe that the model implicitly captures anaphora. It is consistent with gains for sentences where pronouns need to be gendered in translation. Beside improvements in anaphoric cases, the model also improves in overall BLEU, both over its context-agnostic version (+0.7) and over simple concatenation of the context and source sentences (+0.6).

Neural machine translation requires large amounts of parallel training text to learn a reasonable-quality translation model. This is particularly inconvenient for language pairs for which enough parallel text is not available. In this paper, we use monolingual linguistic resources in the source side to address this challenging problem based on a multi-task learning approach. More specifically, we scaffold the machine translation task on auxiliary tasks including semantic parsing, syntactic parsing, and named-entity recognition. This effectively injects semantic and/or syntactic knowledge into the translation model, which would otherwise require a large amount of training bitext. We empirically evaluate and show the effectiveness of our multi-task learning approach on three translation tasks: English-to-French, English-to-Farsi, and English-to-Vietnamese.

Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs, yet requiring tens of thousands of parallel sentences. In this work, we take this research direction to the extreme and investigate whether it is possible to learn to translate even without any parallel data. We propose a model that takes sentences from monolingual corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both languages from this shared feature space, the model effectively learns to translate without using any labeled data. We demonstrate our model on two widely used datasets and two language pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT English-French datasets, without using even a single parallel sentence at training time.

Neural sequence-to-sequence networks with attention have achieved remarkable performance for machine translation. One of the reasons for their effectiveness is their ability to capture relevant source-side contextual information at each time-step prediction through an attention mechanism. However, the target-side context is solely based on the sequence model which, in practice, is prone to a recency bias and lacks the ability to capture effectively non-sequential dependencies among words. To address this limitation, we propose a target-side-attentive residual recurrent network for decoding, where attention over previous words contributes directly to the prediction of the next word. The residual learning facilitates the flow of information from the distant past and is able to emphasize any of the previously translated words, hence it gains access to a wider context. The proposed model outperforms a neural MT baseline as well as a memory and self-attention network on three language pairs. The analysis of the attention learned by the decoder confirms that it emphasizes a wider context, and that it captures syntactic-like structures.

Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.

In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.

Neural machine translation (NMT) suffers a performance deficiency when a limited vocabulary fails to cover the source or target side adequately, which happens frequently when dealing with morphologically rich languages. To address this problem, previous work focused on adjusting translation granularity or expanding the vocabulary size. However, morphological information is relatively under-considered in NMT architectures, which may further improve translation quality. We propose a novel method, which can not only reduce data sparsity but also model morphology through a simple but effective mechanism. By predicting the stem and suffix separately during decoding, our system achieves an improvement of up to 1.98 BLEU compared with previous work on English to Russian translation. Our method is orthogonal to different NMT architectures and stably gains improvements on various domains.

The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.

北京阿比特科技有限公司