We revisit the noisy binary search model of Karp and Kleinberg, in which we have $n$ coins with unknown probabilities $p_i$ that we can flip. The coins are sorted by increasing $p_i$, and we would like to find where the probability crosses (to within $\varepsilon$) of a target value $\tau$. This generalized the fixed-noise model of Burnashev and Zigangirov , in which $p_i = \frac{1}{2} \pm \varepsilon$, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that $\Theta(\frac{1}{\varepsilon^2} \log n)$ samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability $1-\delta$ from \[ \frac{1}{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} \frac{1}{\delta} + \log \frac{1}{\delta})\right) \] samples, where $C_{\tau, \varepsilon}$ is the optimal such constant achievable. For $\delta > n^{-o(1)}$ this is within $1 + o(1)$ of optimal, and for $\delta \ll 1$ it is the first bound within constant factors of optimal.
We study the task of $(\epsilon, \delta)$-differentially private online convex optimization (OCO). In the online setting, the release of each distinct decision or iterate carries with it the potential for privacy loss. This problem has a long history of research starting with Jain et al. [2012] and the best known results for the regime of {\epsilon} not being very small are presented in Agarwal et al. [2023]. In this paper we improve upon the results of Agarwal et al. [2023] in terms of the dimension factors as well as removing the requirement of smoothness. Our results are now the best known rates for DP-OCO in this regime. Our algorithms builds upon the work of [Asi et al., 2023] which introduced the idea of explicitly limiting the number of switches via rejection sampling. The main innovation in our algorithm is the use of sampling from a strongly log-concave density which allows us to trade-off the dimension factors better leading to improved results.
We consider the problem of numerically approximating the solutions to a partial differential equation (PDE) when there is insufficient information to determine a unique solution. Our main example is the Poisson boundary value problem, when the boundary data is unknown and instead one observes finitely many linear measurements of the solution. We view this setting as an optimal recovery problem and develop theory and numerical algorithms for its solution. The main vehicle employed is the derivation and approximation of the Riesz representers of these functionals with respect to relevant Hilbert spaces of harmonic functions.
We propose polar encoding, a representation of categorical and numerical $[0,1]$-valued attributes with missing values to be used in a classification context. We argue that this is a good baseline approach, because it can be used with any classification algorithm, preserves missingness information, is very simple to apply and offers good performance. In particular, unlike the existing missing-indicator approach, it does not require imputation, ensures that missing values are equidistant from non-missing values, and lets decision tree algorithms choose how to split missing values, thereby providing a practical realisation of the "missingness incorporated in attributes" (MIA) proposal. Furthermore, we show that categorical and $[0,1]$-valued attributes can be viewed as special cases of a single attribute type, corresponding to the classical concept of barycentric coordinates, and that this offers a natural interpretation of polar encoding as a fuzzified form of one-hot encoding. With an experiment based on twenty real-life datasets with missing values, we show that, in terms of the resulting classification performance, polar encoding performs better than the state-of-the-art strategies \e{multiple imputation by chained equations} (MICE) and \e{multiple imputation with denoising autoencoders} (MIDAS) and -- depending on the classifier -- about as well or better than mean/mode imputation with missing-indicators.
We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log^2 r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log^2 n)$.
Suppose we are given an $n$-node, $m$-edge input graph $G$, and the goal is to compute a spanning subgraph $H$ on $O(n)$ edges. This can be achieved in linear $O(m + n)$ time via breadth-first search. But can we hope for \emph{sublinear} runtime in some range of parameters? If the goal is to return $H$ as an adjacency list, there are simple lower bounds showing that $\Omega(m + n)$ runtime is necessary. If the goal is to return $H$ as an adjacency matrix, then we need $\Omega(n^2)$ time just to write down the entries of the output matrix. However, we show that neither of these lower bounds still apply if instead the goal is to return $H$ as an \emph{implicit} adjacency matrix, which we call an \emph{adjacency oracle}. An adjacency oracle is a data structure that gives a user the illusion that an adjacency matrix has been computed: it accepts edge queries $(u, v)$, and it returns in near-constant time a bit indicating whether $(u, v) \in E(H)$. Our main result is that one can construct an adjacency oracle for a spanning subgraph on at most $(1+\varepsilon)n$ edges, in $\tilde{O}(n \varepsilon^{-1})$ time, and that this construction time is near-optimal. Additional results include constructions of adjacency oracles for $k$-connectivity certificates and spanners, which are similarly sublinear on dense-enough input graphs. Our adjacency oracles are closely related to Local Computation Algorithms (LCAs) for graph sparsifiers; they can be viewed as LCAs with some computation moved to a preprocessing step, in order to speed up queries. Our oracles imply the first Local algorithm for computing sparse spanning subgraphs of general input graphs in $\tilde{O}(n)$ query time, which works by constructing our adjacency oracle, querying it once, and then throwing the rest of the oracle away. This addresses an open problem of Rubinfeld [CSR '17].
We study a class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-time inverse or to be computible by a reversible logic circuit. These problems are characterized by the complexity class $\mathsf{FP}^{\mathsf{PSPACE}}$, and include natural $\mathsf{FP}^{\mathsf{PSPACE}}$-complete problems in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described by piecewise-linear transformations.
We consider a problem where agents have private positions on a line, and public approval preferences over two facilities, and their cost is the maximum distance from their approved facilities. The goal is to decide the facility locations to minimize the total and the max cost, while incentivizing the agents to be truthful. We design a strategyproof mechanism that is simultaneously $11$- and $5$-approximate for these two objective functions, thus improving the previously best-known bounds of $2n+1$ and $9$.
Stochastic programs where the uncertainty distribution must be inferred from noisy data samples are considered. The stochastic programs are approximated with distributionally-robust optimizations that minimize the worst-case expected cost over ambiguity sets, i.e., sets of distributions that are sufficiently compatible with the observed data. In this paper, the ambiguity sets capture the set of probability distributions whose convolution with the noise distribution remains within a ball centered at the empirical noisy distribution of data samples parameterized by the total variation distance. Using the prescribed ambiguity set, the solutions of the distributionally-robust optimizations converge to the solutions of the original stochastic programs when the numbers of the data samples grow to infinity. Therefore, the proposed distributionally-robust optimization problems are asymptotically consistent. This is proved under the assumption that the distribution of the noise is uniformly diagonally dominant. More importantly, the distributionally-robust optimization problems can be cast as tractable convex optimization problems and are therefore amenable to large-scale stochastic problems.
We find a succinct expression for computing the sequence $x_t = a_t x_{t-1} + b_t$ in parallel with two prefix sums, given $t = (1, 2, \dots, n)$, $a_t \in \mathbb{R}^n$, $b_t \in \mathbb{R}^n$, and initial value $x_0 \in \mathbb{R}$. On $n$ parallel processors, the computation of $n$ elements incurs $\mathcal{O}(\log n)$ time and $\mathcal{O}(n)$ space. Sequences of this form are ubiquitous in science and engineering, making efficient parallelization useful for a vast number of applications. We implement our expression in software, test it on parallel hardware, and verify that it executes faster than sequential computation by a factor of $\frac{n}{\log n}$.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.