亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph $(G,\sigma)$, equipped with lists $L(v) \subseteq V(H), v \in V(G)$, of allowed images, to a fixed target signed graph $(H,\pi)$. The complexity of the similar homomorphism problem without lists (corresponding to all lists being $L(v)=V(H)$) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when $H$ is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterize the polynomial cases of list homomorphisms to unsigned graphs).

相關內容

Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

We present a hierarchical neural message passing architecture for learning on molecular graphs. Our model takes in two complementary graph representations: the raw molecular graph representation and its associated junction tree, where nodes represent meaningful clusters in the original graph, e.g., rings or bridged compounds. We then proceed to learn a molecule's representation by passing messages inside each graph, and exchange messages between the two representations using a coarse-to-fine and fine-to-coarse information flow. Our method is able to overcome some of the restrictions known from classical GNNs, like detecting cycles, while still being very efficient to train. We validate its performance on the ZINC dataset and datasets stemming from the MoleculeNet benchmark collection.

Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront. This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving. In absence of reliable domain expertise, one might resort to inferring the latent graph structure, which is often difficult due to the vast search space of possible graphs. Here we introduce Pointer Graph Networks (PGNs) which augment sets or graphs with additional inferred edges for improved model expressivity. PGNs allow each node to dynamically point to another node, followed by message passing over these pointers. The sparsity of this adaptable graph structure makes learning tractable while still being sufficiently expressive to simulate complex algorithms. Critically, the pointing mechanism is directly supervised to model long-term sequences of operations on classical data structures, incorporating useful structural inductive biases from theoretical computer science. Qualitatively, we demonstrate that PGNs can learn parallelisable variants of pointer-based data structures, namely disjoint set unions and link/cut trees. PGNs generalise out-of-distribution to 5x larger test inputs on dynamic graph connectivity tasks, outperforming unrestricted GNNs and Deep Sets.

Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online.

In this paper, from a theoretical perspective, we study how powerful graph neural networks (GNNs) can be for learning approximation algorithms for combinatorial problems. To this end, we first establish a new class of GNNs that can solve strictly a wider variety of problems than existing GNNs. Then, we bridge the gap between GNN theory and the theory of distributed local algorithms to theoretically demonstrate that the most powerful GNN can learn approximation algorithms for the minimum dominating set problem and the minimum vertex cover problem with some approximation ratios and that no GNN can perform better than with these ratios. This paper is the first to elucidate approximation ratios of GNNs for combinatorial problems. Furthermore, we prove that adding coloring or weak-coloring to each node feature improves these approximation ratios. This indicates that preprocessing and feature engineering theoretically strengthen model capabilities.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Network embedding has attracted an increasing attention over the past few years. As an effective approach to solve graph mining problems, network embedding aims to learn a low-dimensional feature vector representation for each node of a given network. The vast majority of existing network embedding algorithms, however, are only designed for unsigned networks, and the signed networks containing both positive and negative links, have pretty distinct properties from the unsigned counterpart. In this paper, we propose a deep network embedding model to learn the low-dimensional node vector representations with structural balance preservation for the signed networks. The model employs a semi-supervised stacked auto-encoder to reconstruct the adjacency connections of a given signed network. As the adjacency connections are overwhelmingly positive in the real-world signed networks, we impose a larger penalty to make the auto-encoder focus more on reconstructing the scarce negative links than the abundant positive links. In addition, to preserve the structural balance property of signed networks, we design the pairwise constraints to make the positively connected nodes much closer than the negatively connected nodes in the embedding space. Based on the network representations learned by the proposed model, we conduct link sign prediction and community detection in signed networks. Extensive experimental results in real-world datasets demonstrate the superiority of the proposed model over the state-of-the-art network embedding algorithms for graph representation learning in signed networks.

Convolutional neural networks (CNNs) have achieved great success on grid-like data such as images, but face tremendous challenges in learning from more generic data such as graphs. In CNNs, the trainable local filters enable the automatic extraction of high-level features. The computation with filters requires a fixed number of ordered units in the receptive fields. However, the number of neighboring units is neither fixed nor are they ordered in generic graphs, thereby hindering the applications of convolutional operations. Here, we address these challenges by proposing the learnable graph convolutional layer (LGCL). LGCL automatically selects a fixed number of neighboring nodes for each feature based on value ranking in order to transform graph data into grid-like structures in 1-D format, thereby enabling the use of regular convolutional operations on generic graphs. To enable model training on large-scale graphs, we propose a sub-graph training method to reduce the excessive memory and computational resource requirements suffered by prior methods on graph convolutions. Our experimental results on node classification tasks in both transductive and inductive learning settings demonstrate that our methods can achieve consistently better performance on the Cora, Citeseer, Pubmed citation network, and protein-protein interaction network datasets. Our results also indicate that the proposed methods using sub-graph training strategy are more efficient as compared to prior approaches.

A fundamental computation for statistical inference and accurate decision-making is to compute the marginal probabilities or most probable states of task-relevant variables. Probabilistic graphical models can efficiently represent the structure of such complex data, but performing these inferences is generally difficult. Message-passing algorithms, such as belief propagation, are a natural way to disseminate evidence amongst correlated variables while exploiting the graph structure, but these algorithms can struggle when the conditional dependency graphs contain loops. Here we use Graph Neural Networks (GNNs) to learn a message-passing algorithm that solves these inference tasks. We first show that the architecture of GNNs is well-matched to inference tasks. We then demonstrate the efficacy of this inference approach by training GNNs on a collection of graphical models and showing that they substantially outperform belief propagation on loopy graphs. Our message-passing algorithms generalize out of the training set to larger graphs and graphs with different structure.

Recent successes in word embedding and document embedding have motivated researchers to explore similar representations for networks and to use such representations for tasks such as edge prediction, node label prediction, and community detection. Such network embedding methods are largely focused on finding distributed representations for unsigned networks and are unable to discover embeddings that respect polarities inherent in edges. We propose SIGNet, a fast scalable embedding method suitable for signed networks. Our proposed objective function aims to carefully model the social structure implicit in signed networks by reinforcing the principles of social balance theory. Our method builds upon the traditional word2vec family of embedding approaches and adds a new targeted node sampling strategy to maintain structural balance in higher-order neighborhoods. We demonstrate the superiority of SIGNet over state-of-the-art methods proposed for both signed and unsigned networks on several real world datasets from different domains. In particular, SIGNet offers an approach to generate a richer vocabulary of features of signed networks to support representation and reasoning.

北京阿比特科技有限公司