亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the control of McKean-Vlasov dynamics whose coefficients have mean field interactions in the state and control. We show that for a class of linear-convex mean field control problems, the unique optimal open-loop control admits the optimal 1/2-H\"{o}lder regularity in time. Consequently, we prove that the value function can be approximated by one with piecewise constant controls and discrete-time state processes arising from Euler-Maruyama time stepping, up to an order 1/2 error, and the optimal control can be approximated up to an order 1/4 error. These results are novel even for the case without mean field interaction.

相關內容

Optimal control problems can be solved by first applying the Pontryagin maximum principle, followed by computing a solution of the corresponding unconstrained Hamiltonian dynamical system. In this paper, and to achieve a balance between robustness and efficiency, we learn a reduced Hamiltonian of the unconstrained Hamiltonian. This reduced Hamiltonian is learned by going backward in time and by minimizing the loss function resulting from application of the Pontryagin maximum principle conditions. The robustness of our learning process is then further improved by progressively learning a posterior distribution of reduced Hamiltonians. This leads to a more efficient sampling of the generalized coordinates (position, velocity) of our phase space. Our solution framework applies to not only optimal control problems with finite-dimensional phase (state) spaces but also the infinite dimensional case.

We propose and analyze a new dynamical system with \textit{a closed-loop control law} in a Hilbert space $\mathcal{H}$, aiming to shed light on the acceleration phenomenon for \textit{monotone inclusion} problems, which unifies a broad class of optimization, saddle point and variational inequality (VI) problems under a single framework. Given an operator $A: \mathcal{H} \rightrightarrows \mathcal{H}$ that is maximal monotone, we study a closed-loop control system that is governed by the operator $I - (I + \lambda(t)A)^{-1}$ where $\lambda(\cdot)$ is tuned by the resolution of the algebraic equation $\lambda(t)\|(I + \lambda(t)A)^{-1}x(t) - x(t)\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a global solution via the Cauchy-Lipschitz theorem. We present a Lyapunov function that allows for establishing the weak convergence of trajectories and strong convergence results under additional conditions. We establish a global ergodic rate of $O(t^{-(p+1)/2})$ in terms of a gap function and a global pointwise rate of $O(t^{-p/2})$ in terms of a residue function. Local linear convergence is established in terms of a distance function under an error bound condition. Further, we provide an algorithmic framework based on implicit discretization of our system in a Euclidean setting, generalizing the large-step HPE framework of~\citet{Monteiro-2012-Iteration}. While the discrete-time analysis is a simplification and generalization of the previous analysis for bounded domain, it is motivated by the aforementioned continuous-time analysis, illustrating the fundamental role that the closed-loop control plays in acceleration in monotone inclusion. A highlight of our analysis is set of new results concerning $p$-th order tensor algorithms for monotone inclusion problems, which complement the recent analysis for saddle point and VI problems.

Mean field control (MFC) is an effective way to mitigate the curse of dimensionality of cooperative multi-agent reinforcement learning (MARL) problems. This work considers a collection of $N_{\mathrm{pop}}$ heterogeneous agents that can be segregated into $K$ classes such that the $k$-th class contains $N_k$ homogeneous agents. We aim to prove approximation guarantees of the MARL problem for this heterogeneous system by its corresponding MFC problem. We consider three scenarios where the reward and transition dynamics of all agents are respectively taken to be functions of $(1)$ joint state and action distributions across all classes, $(2)$ individual distributions of each class, and $(3)$ marginal distributions of the entire population. We show that, in these cases, the $K$-class MARL problem can be approximated by MFC with errors given as $e_1=\mathcal{O}(\frac{\sqrt{|\mathcal{X}|}+\sqrt{|\mathcal{U}|}}{N_{\mathrm{pop}}}\sum_{k}\sqrt{N_k})$, $e_2=\mathcal{O}(\left[\sqrt{|\mathcal{X}|}+\sqrt{|\mathcal{U}|}\right]\sum_{k}\frac{1}{\sqrt{N_k}})$ and $e_3=\mathcal{O}\left(\left[\sqrt{|\mathcal{X}|}+\sqrt{|\mathcal{U}|}\right]\left[\frac{A}{N_{\mathrm{pop}}}\sum_{k\in[K]}\sqrt{N_k}+\frac{B}{\sqrt{N_{\mathrm{pop}}}}\right]\right)$, respectively, where $A, B$ are some constants and $|\mathcal{X}|,|\mathcal{U}|$ are the sizes of state and action spaces of each agent. Finally, we design a Natural Policy Gradient (NPG) based algorithm that, in the three cases stated above, can converge to an optimal MARL policy within $\mathcal{O}(e_j)$ error with a sample complexity of $\mathcal{O}(e_j^{-3})$, $j\in\{1,2,3\}$, respectively.

In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.

When the sizes of the state and action spaces are large, solving MDPs can be computationally prohibitive even if the probability transition matrix is known. So in practice, a number of techniques are used to approximately solve the dynamic programming problem, including lookahead, approximate policy evaluation using an m-step return, and function approximation. In a recent paper, (Efroni et al. 2019) studied the impact of lookahead on the convergence rate of approximate dynamic programming. In this paper, we show that these convergence results change dramatically when function approximation is used in conjunction with lookout and approximate policy evaluation using an m-step return. Specifically, we show that when linear function approximation is used to represent the value function, a certain minimum amount of lookahead and multi-step return is needed for the algorithm to even converge. And when this condition is met, we characterize the finite-time performance of policies obtained using such approximate policy iteration. Our results are presented for two different procedures to compute the function approximation: linear least-squares regression and gradient descent.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

The piecewise constant Mumford-Shah (PCMS) model and the Rudin-Osher-Fatemi (ROF) model are two of the most famous variational models in image segmentation and image restoration, respectively. They have ubiquitous applications in image processing. In this paper, we explore the linkage between these two important models. We prove that for two-phase segmentation problem the optimal solution of the PCMS model can be obtained by thresholding the minimizer of the ROF model. This linkage is still valid for multiphase segmentation under mild assumptions. Thus it opens a new segmentation paradigm: image segmentation can be done via image restoration plus thresholding. This new paradigm, which circumvents the innate non-convex property of the PCMS model, therefore improves the segmentation performance in both efficiency (much faster than state-of-the-art methods based on PCMS model, particularly when the phase number is high) and effectiveness (producing segmentation results with better quality) due to the flexibility of the ROF model in tackling degraded images, such as noisy images, blurry images or images with information loss. As a by-product of the new paradigm, we derive a novel segmentation method, coined thresholded-ROF (T-ROF) method, to illustrate the virtue of manipulating image segmentation through image restoration techniques. The convergence of the T-ROF method under certain conditions is proved, and elaborate experimental results and comparisons are presented.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司