亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasingly popular adoption of source code in many critical tasks motivates the development of data augmentation (DA) techniques to enhance training data and improve various capabilities (e.g., robustness and generalizability) of these models. Although a series of DA methods have been proposed and tailored for source code models, there lacks a comprehensive survey and examination to understand their effectiveness and implications. This paper fills this gap by conducting a comprehensive and integrative survey of data augmentation for source code, wherein we systematically compile and encapsulate existing literature to provide a comprehensive overview of the field. We start by constructing a taxonomy of DA for source code models model approaches, followed by a discussion on prominent, methodologically illustrative approaches. Next, we highlight the general strategies and techniques to optimize the DA quality. Subsequently, we underscore techniques that find utility in widely-accepted source code scenarios and downstream tasks. Finally, we outline the prevailing challenges and potential opportunities for future research. In essence, this paper endeavors to demystify the corpus of existing literature on DA for source code models, and foster further exploration in this sphere. Complementing this, we present a continually updated GitHub repository that hosts a list of update-to-date papers on DA for source code models, accessible at \url{//github.com/terryyz/DataAug4Code}.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · state-of-the-art · 估計/估計量 · 中央處理器 (CPU) ·
2023 年 8 月 21 日

We present YOLOBench, a benchmark comprised of 550+ YOLO-based object detection models on 4 different datasets and 4 different embedded hardware platforms (x86 CPU, ARM CPU, Nvidia GPU, NPU). We collect accuracy and latency numbers for a variety of YOLO-based one-stage detectors at different model scales by performing a fair, controlled comparison of these detectors with a fixed training environment (code and training hyperparameters). Pareto-optimality analysis of the collected data reveals that, if modern detection heads and training techniques are incorporated into the learning process, multiple architectures of the YOLO series achieve a good accuracy-latency trade-off, including older models like YOLOv3 and YOLOv4. We also evaluate training-free accuracy estimators used in neural architecture search on YOLOBench and demonstrate that, while most state-of-the-art zero-cost accuracy estimators are outperformed by a simple baseline like MAC count, some of them can be effectively used to predict Pareto-optimal detection models. We showcase that by using a zero-cost proxy to identify a YOLO architecture competitive against a state-of-the-art YOLOv8 model on a Raspberry Pi 4 CPU. The code and data are available at //github.com/Deeplite/deeplite-torch-zoo

Ensemble methods are commonly used in classification due to their remarkable performance. Achieving high accuracy in a data stream environment is a challenging task considering disruptive changes in the data distribution, also known as concept drift. A greater diversity of ensemble components is known to enhance prediction accuracy in such settings. Despite the diversity of components within an ensemble, not all contribute as expected to its overall performance. This necessitates a method for selecting components that exhibit high performance and diversity. We present a novel ensemble construction and maintenance approach based on MMR (Maximal Marginal Relevance) that dynamically combines the diversity and prediction accuracy of components during the process of structuring an ensemble. The experimental results on both four real and 11 synthetic datasets demonstrate that the proposed approach (DynED) provides a higher average mean accuracy compared to the five state-of-the-art baselines.

The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at //opendatalab.org.cn/WanJuan1.0.

Unsupervised Domain Adaptation (UDA) approaches address the covariate shift problem by minimizing the distribution discrepancy between the source and target domains, assuming that the label distribution is invariant across domains. However, in the imbalanced domain adaptation (IDA) scenario, covariate and long-tailed label shifts both exist across domains. To tackle the IDA problem, some current research focus on minimizing the distribution discrepancies of each corresponding class between source and target domains. Such methods rely much on the reliable pseudo labels' selection and the feature distributions estimation for target domain, and the minority classes with limited numbers makes the estimations more uncertainty, which influences the model's performance. In this paper, we propose a cross-domain class discrepancy minimization method based on accumulative class-centroids for IDA (centroIDA). Firstly, class-based re-sampling strategy is used to obtain an unbiased classifier on source domain. Secondly, the accumulative class-centroids alignment loss is proposed for iterative class-centroids alignment across domains. Finally, class-wise feature alignment loss is used to optimize the feature representation for a robust classification boundary. A series of experiments have proved that our method outperforms other SOTA methods on IDA problem, especially with the increasing degree of label shift.

Data preprocessing is a crucial step in the machine learning process that transforms raw data into a more usable format for downstream ML models. However, it can be costly and time-consuming, often requiring the expertise of domain experts. Existing automated machine learning (AutoML) frameworks claim to automate data preprocessing. However, they often use a restricted search space of data preprocessing pipelines which limits the potential performance gains, and they are often too slow as they require training the ML model multiple times. In this paper, we propose DiffPrep, a method that can automatically and efficiently search for a data preprocessing pipeline for a given tabular dataset and a differentiable ML model such that the performance of the ML model is maximized. We formalize the problem of data preprocessing pipeline search as a bi-level optimization problem. To solve this problem efficiently, we transform and relax the discrete, non-differential search space into a continuous and differentiable one, which allows us to perform the pipeline search using gradient descent with training the ML model only once. Our experiments show that DiffPrep achieves the best test accuracy on 15 out of the 18 real-world datasets evaluated and improves the model's test accuracy by up to 6.6 percentage points.

Delay alignment modulation (DAM) is a promising technology to achieve ISI-free wideband communication, by leveraging delay compensation and path-based beamforming, rather than the conventional channel equalization or multi-carrier transmission. In particular, when there exist a few strong time-dispersive channel paths, DAM can effectively align different propagation delays and achieve their constructive superposition, thus especially appealing for intelligent reflecting surfaces (IRSs)-aided communications with controllable multi-paths. In this paper, we apply DAM to multi-IRS aided wideband communication and study its practical design and achievable performance. We first provide an asymptotic analysis showing that when the number of base station (BS) antennas is much larger than that of IRSs, an ISI-free channel can be established with appropriate delay pre-compensation and the simple path-based MRT beamforming. We then consider the general system setup and study the problem of joint path-based beamforming and phase shifts design for DAM transmission, by considering the three classical beamforming techniques on a per-path basis, namely the low-complexity path-based MRT beamforming, the path-based ZF beamforming for ISI-free DAM communication, and the optimal path-based MMSE beamforming. As a comparison, OFDM-based multi-IRS aided communication is considered. Simulation results demonstrate that DAM outperforms OFDM in terms of spectral efficiency, BER, and PAPR.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司