亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present the first fully-automated expected amortised cost analysis of self-adjusting data structures, that is, of randomised splay trees, randomised splay heaps and randomised meldable heaps, which so far have only (semi-) manually been analysed in the literature. Our analysis is stated as a type-and-effect system for a first-order functional programming language with support for sampling over discrete distributions, non-deterministic choice and a ticking operator. The latter allows for the specification of fine-grained cost models. We state two soundness theorems based on two different -- but strongly related -- typing rules of ticking, which account differently for the cost of non-terminating computations. Finally we provide a prototype implementation able to fully automatically analyse the aforementioned case studies.

相關內容

Stochastic gradient algorithms are widely used for both optimization and sampling in large-scale learning and inference problems. However, in practice, tuning these algorithms is typically done using heuristics and trial-and-error rather than rigorous, generalizable theory. To address this gap between theory and practice, we novel insights into the effect of tuning parameters by characterizing the large-sample behavior of iterates of a very general class of preconditioned stochastic gradient algorithms with fixed step size. In the optimization setting, our results show that iterate averaging with a large fixed step size can result in statistically efficient approximation of the (local) M-estimator. In the sampling context, our results show that with appropriate choices of tuning parameters, the limiting stationary covariance can match either the Bernstein--von Mises limit of the posterior, adjustments to the posterior for model misspecification, or the asymptotic distribution of the MLE; and that with a naive tuning the limit corresponds to none of these. Moreover, we argue that an essentially independent sample from the stationary distribution can be obtained after a fixed number of passes over the dataset. We validate our asymptotic results in realistic finite-sample regimes via several experiments using simulated and real data. Overall, we demonstrate that properly tuned stochastic gradient algorithms with constant step size offer a computationally efficient and statistically robust approach to obtaining point estimates or posterior-like samples.

When training a machine learning classifier on data where one of the classes is intrinsically rare, the classifier will often assign too few sources to the rare class. To address this, it is common to up-weight the examples of the rare class to ensure it isn't ignored. It is also a frequent practice to train on restricted data where the balance of source types is closer to equal for the same reason. Here we show that these practices can bias the model toward over-assigning sources to the rare class. We also explore how to detect when training data bias has had a statistically significant impact on the trained model's predictions, and how to reduce the bias's impact. While the magnitude of the impact of the techniques developed here will vary with the details of the application, for most cases it should be modest. They are, however, universally applicable to every time a machine learning classification model is used, making them analogous to Bessel's correction to the sample variance.

This paper investigates the collaboration of multiple connected and automated vehicles (CAVs) in different scenarios. In general, the collaboration of CAVs can be formulated as a nonlinear and nonconvex model predictive control (MPC) problem. Most of the existing approaches available for utilization to solve such an optimization problem suffer from the drawback of considerable computational burden, which hinders the practical implementation in real time. This paper proposes the use of sequential convex programming (SCP), which is a powerful approach to solving the nonlinear and nonconvex MPC problem in real time. To appropriately deploy the methodology, as a first stage, SCP requires linearization and discretization when addressing the nonlinear dynamics of the system model adequately. Based on the linearization and discretization, the original MPC problem can be transformed into a quadratically constrained quadratic programming (QCQP) problem. Besides, SCP also involves convexification to handle the associated nonconvex constraints. Thus, the nonconvex QCQP can be reduced to a quadratic programming (QP) problem that can be solved rather quickly. Therefore, the computational efficiency is suitably improved despite the existence of nonlinear and nonconvex characteristics, whereby the implementation is realized in real time. Furthermore, simulation results in three different scenarios of autonomous driving are presented to validate the effectiveness and efficiency of our proposed approach.

Clustering has received much attention in Statistics and Machine learning with the aim of developing statistical models and autonomous algorithms which are capable of acquiring information from raw data in order to perform exploratory analysis.Several techniques have been developed to cluster sampled univariate vectors only considering the average value over the whole period and as such they have not been able to explore fully the underlying distribution as well as other features of the data, especially in presence of structured time series. We propose a model-based clustering technique that is based on quantile regression permitting us to cluster bivariate time series at different quantile levels. We model the within cluster density using asymmetric Laplace distribution allowing us to take into account asymmetry in the distribution of the data. We evaluate the performance of the proposed technique through a simulation study. The method is then applied to cluster time series observed from Glob-colour satellite data related to trophic status indices with aim of evaluating their temporal dynamics in order to identify homogeneous areas, in terms of trophic status, in the Gulf of Gabes.

Harnessing parity-time (PT) symmetry with balanced gain and loss profiles has created a variety of opportunities in electronics from wireless energy transfer to telemetry sensing and topological defect engineering. However, existing implementations often employ ad-hoc approaches at low operating frequencies and are unable to accommodate large-scale integration. Here, we report a fully integrated realization of PT-symmetry in a standard complementary metal-oxide-semiconductor technology. Our work demonstrates salient PT-symmetry features such as phase transition as well as the ability to manipulate broadband microwave generation and propagation beyond the limitations encountered by exiting schemes. The system shows 2.1 times bandwidth and 30 percentage noise reduction compared to conventional microwave generation in oscillatory mode and displays large non-reciprocal microwave transport from 2.75 to 3.10 gigahertz in non-oscillatory mode due to enhanced nonlinearities. This approach could enrich integrated circuit (IC) design methodology beyond well-established performance limits and enable the use of scalable IC technology to study topological effects in high-dimensional non-Hermitian systems.

Particle-based modeling of materials at atomic scale plays an important role in the development of new materials and understanding of their properties. The accuracy of particle simulations is determined by interatomic potentials, which allow to calculate the potential energy of an atomic system as a function of atomic coordinates and potentially other properties. First-principles-based ab initio potentials can reach arbitrary levels of accuracy, however their aplicability is limited by their high computational cost. Machine learning (ML) has recently emerged as an effective way to offset the high computational costs of ab initio atomic potentials by replacing expensive models with highly efficient surrogates trained on electronic structure data. Among a plethora of current methods, symbolic regression (SR) is gaining traction as a powerful "white-box" approach for discovering functional forms of interatomic potentials. This contribution discusses the role of symbolic regression in Materials Science (MS) and offers a comprehensive overview of current methodological challenges and state-of-the-art results. A genetic programming-based approach for modeling atomic potentials from raw data (consisting of snapshots of atomic positions and associated potential energy) is presented and empirically validated on ab initio electronic structure data.

Detecting and mitigating harmful biases in modern language models are widely recognized as crucial, open problems. In this paper, we take a step back and investigate how language models come to be biased in the first place. We use a relatively small language model, using the LSTM architecture trained on an English Wikipedia corpus. With full access to the data and to the model parameters as they change during every step while training, we can map in detail how the representation of gender develops, what patterns in the dataset drive this, and how the model's internal state relates to the bias in a downstream task (semantic textual similarity). We find that the representation of gender is dynamic and identify different phases during training. Furthermore, we show that gender information is represented increasingly locally in the input embeddings of the model and that, as a consequence, debiasing these can be effective in reducing the downstream bias. Monitoring the training dynamics, allows us to detect an asymmetry in how the female and male gender are represented in the input embeddings. This is important, as it may cause naive mitigation strategies to introduce new undesirable biases. We discuss the relevance of the findings for mitigation strategies more generally and the prospects of generalizing our methods to larger language models, the Transformer architecture, other languages and other undesirable biases.

We examine acoustic Doppler current profiler (ADCP) measurements from underwater gliders to determine glider position, glider velocity, and subsurface current. ADCPs, however, do not directly observe the quantities of interest; instead, they measure the relative motion of the vehicle and the water column. We examine the lineage of mathematical innovations that have previously been applied to this problem, discovering an unstated but incorrect assumption of independence. We reframe a recent method to form a joint probability model of current and vehicle navigation, which allows us to correct this assumption and extend the classic Kalman smoothing method. Detailed simulations affirm the efficacy of our approach for computing estimates and their uncertainty. The joint model developed here sets the stage for future work to incorporate constraints, range measurements, and robust statistical modeling.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司