Training large foundation models using self-supervised objectives on unlabeled data, followed by fine-tuning on downstream tasks, has emerged as a standard procedure. Unfortunately, the efficacy of this approach is often constrained by both limited fine-tuning compute and scarcity in labeled downstream data. We introduce Multimodal Attention Merging (MAM), an attempt that facilitates direct knowledge transfer from attention matrices of models rooted in high resource modalities, text and images, to those in resource-constrained domains, speech and audio, employing a zero-shot paradigm. MAM reduces the relative Word Error Rate (WER) of an Automatic Speech Recognition (ASR) model by up to 6.70%, and relative classification error of an Audio Event Classification (AEC) model by 10.63%. In cases where some data/compute is available, we present Learnable-MAM, a data-driven approach to merging attention matrices, resulting in a further 2.90% relative reduction in WER for ASR and 18.42% relative reduction in AEC compared to fine-tuning.
Recent methods utilize graph contrastive Learning within graph-structured user-item interaction data for collaborative filtering and have demonstrated their efficacy in recommendation tasks. However, they ignore that the difference relation density of nodes between the user- and item-side causes the adaptability of graphs on bilateral nodes to be different after multi-hop graph interaction calculation, which limits existing models to achieve ideal results. To solve this issue, we propose a novel framework for recommendation tasks called Bilateral Unsymmetrical Graph Contrastive Learning (BusGCL) that consider the bilateral unsymmetry on user-item node relation density for sliced user and item graph reasoning better with bilateral slicing contrastive training. Especially, taking into account the aggregation ability of hypergraph-based graph convolutional network (GCN) in digging implicit similarities is more suitable for user nodes, embeddings generated from three different modules: hypergraph-based GCN, GCN and perturbed GCN, are sliced into two subviews by the user- and item-side respectively, and selectively combined into subview pairs bilaterally based on the characteristics of inter-node relation structure. Furthermore, to align the distribution of user and item embeddings after aggregation, a dispersing loss is leveraged to adjust the mutual distance between all embeddings for maintaining learning ability. Comprehensive experiments on two public datasets have proved the superiority of BusGCL in comparison to various recommendation methods. Other models can simply utilize our bilateral slicing contrastive learning to enhance recommending performance without incurring extra expenses.
Recent advancements in deep learning-based image compression are notable. However, prevalent schemes that employ a serial context-adaptive entropy model to enhance rate-distortion (R-D) performance are markedly slow. Furthermore, the complexities of the encoding and decoding networks are substantially high, rendering them unsuitable for some practical applications. In this paper, we propose two techniques to balance the trade-off between complexity and performance. First, we introduce two branching coding networks to independently learn a low-resolution latent representation and a high-resolution latent representation of the input image, discriminatively representing the global and local information therein. Second, we utilize the high-resolution latent representation as conditional information for the low-resolution latent representation, furnishing it with global information, thus aiding in the reduction of redundancy between low-resolution information. We do not utilize any serial entropy models. Instead, we employ a parallel channel-wise auto-regressive entropy model for encoding and decoding low-resolution and high-resolution latent representations. Experiments demonstrate that our method is approximately twice as fast in both encoding and decoding compared to the parallelizable checkerboard context model, and it also achieves a 1.2% improvement in R-D performance compared to state-of-the-art learned image compression schemes. Our method also outperforms classical image codecs including H.266/VVC-intra (4:4:4) and some recent learned methods in rate-distortion performance, as validated by both PSNR and MS-SSIM metrics on the Kodak dataset.
Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.
Incorporating item content information into click-through rate (CTR) prediction models remains a challenge, especially with the time and space constraints of industrial scenarios. The content-encoding paradigm, which integrates user and item encoders directly into CTR models, prioritizes space over time. In contrast, the embedding-based paradigm transforms item and user semantics into latent embeddings, subsequently caching them to optimize processing time at the expense of space. In this paper, we introduce a new semantic-token paradigm and propose a discrete semantic tokenization approach, namely UIST, for user and item representation. UIST facilitates swift training and inference while maintaining a conservative memory footprint. Specifically, UIST quantizes dense embedding vectors into discrete tokens with shorter lengths and employs a hierarchical mixture inference module to weigh the contribution of each user--item token pair. Our experimental results on news recommendation showcase the effectiveness and efficiency (about 200-fold space compression) of UIST for CTR prediction.
Exploring the application of powerful large language models (LLMs) on the named entity recognition (NER) task has drawn much attention recently. This work pushes the performance boundary of zero-shot NER with LLMs by proposing a training-free self-improving framework, which utilizes an unlabeled corpus to stimulate the self-learning ability of LLMs. First, we use the LLM to make predictions on the unlabeled corpus using self-consistency and obtain a self-annotated dataset. Second, we explore various strategies to select reliable annotations to form a reliable self-annotated dataset. Finally, for each test input, we retrieve demonstrations from the reliable self-annotated dataset and perform inference via in-context learning. Experiments on four benchmarks show substantial performance improvements achieved by our framework. Through comprehensive experimental analysis, we find that increasing the size of unlabeled corpus or iterations of self-improving does not guarantee further improvement, but the performance might be boosted via more advanced strategies for reliable annotation selection. Code and data are publicly available at //github.com/Emma1066/Self-Improve-Zero-Shot-NER
Autonomous target tracking with quadrotors has wide applications in many scenarios, such as cinematographic follow-up shooting or suspect chasing. Target motion prediction is necessary when designing the tracking planner. However, the widely used constant velocity or constant rotation assumption can not fully capture the dynamics of the target. The tracker may fail when the target happens to move aggressively, such as sudden turn or deceleration. In this paper, we propose an intention-aware planner by additionally considering the intention of the target to enhance safety and robustness in aerial tracking applications. Firstly, a designated intention prediction method is proposed, which combines a user-defined potential assessment function and a state observation function. A reachable region is generated to specifically evaluate the turning intentions. Then we design an intention-driven hybrid A* method to predict the future possible positions for the target. Finally, an intention-aware optimization approach is designed to generate a spatial-temporal optimal trajectory, allowing the tracker to perceive unexpected situations from the target. Benchmark comparisons and real-world experiments are conducted to validate the performance of our method.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.