亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the domain of mobile health, tailoring interventions for real-time delivery is of paramount importance. Micro-randomized trials have emerged as the "gold-standard" methodology for developing such interventions. Analyzing data from these trials provides insights into the efficacy of interventions and the potential moderation by specific covariates. The "causal excursion effect", a novel class of causal estimand, addresses these inquiries, backed by current semiparametric inference techniques. Yet, existing methods mainly focus on continuous or binary data, leaving count data largely unexplored. The current work is motivated by the Drink Less micro-randomized trial from the UK, which focuses on a zero-inflated proximal outcome, the number of screen views in the subsequent hour following the intervention decision point. In the current paper, we revisit the concept of causal excursion effects, specifically for zero-inflated count outcomes, and introduce novel estimation approaches that incorporate nonparametric techniques. Bidirectional asymptotics are derived for the proposed estimators. Through extensive simulation studies, we evaluate the performance of the proposed estimators. As an illustration, we also employ the proposed methods to the Drink Less trial data.

相關內容

Federated learning for training models over mobile devices is gaining popularity. Current systems for this task exhibit significant trade-offs between model accuracy, privacy guarantee, and device efficiency. For instance, Oort (OSDI 2021) provides excellent accuracy and efficiency but requires a trusted central server. On the other hand, Orchard (OSDI 2020) provides good accuracy and the rigorous guarantee of differential privacy over an untrusted server, but creates huge overhead for the devices. This paper describes Aero, a new federated learning system that significantly improves this trade-off. Aero guarantees good accuracy, differential privacy over an untrusted server, and keeps the device overhead low. The key idea of Aero is to tune system architecture and design to a specific set of popular, federated learning algorithms. This tuning requires novel optimizations and techniques, e.g., a new protocol to securely aggregate updates from devices. An evaluation of Aero demonstrates that it provides comparable accuracy to plain federated learning (without differential privacy), and it improves efficiency (CPU and network) over Orchard by up to $10^5\times$.

In the field of medical imaging, there are seldom large-scale public datasets with high-quality annotations due to data privacy and annotation cost. To address this issue, we release SynFundus-1M, a high-quality synthetic dataset containing over \textbf{1 million} fundus images w.r.t. 11 disease types. Moreover, we intentionally diversify the readability of the images and accordingly provide 4 types of the quality score for each image. To the best of our knowledge, SynFundus-1M is currently the largest fundus dataset with the most sophisticated annotations. All the images are generated by a Denoising Diffusion Probabilistic Model, named SynFundus-Generator. Trained with over 1.3 million private fundus images, our SynFundus-Generator achieves significant superior performance in generating fundus images compared to some recent related works. Furthermore, we blend some synthetic images from SynFundus-1M with real fundus images, and ophthalmologists can hardly distinguish the synthetic images from real ones. Through extensive experiments, we demonstrate that both convolutional neural networs (CNN) and Vision Transformer (ViT) can benefit from SynFundus-1M by pretraining or training directly. Compared to datasets like ImageNet or EyePACS, models trained on SynFundus-1M not only achieve better performance but also faster convergence on various downstream tasks.

Neural networks are powerful tools in various applications, and quantifying their uncertainty is crucial for reliable decision-making. In the deep learning field, the uncertainties are usually categorized into aleatoric (data) and epistemic (model) uncertainty. In this paper, we point out that the existing popular variance attenuation method highly overestimates aleatoric uncertainty. To address this issue, we propose a new estimation method by actively de-noising the observed data \footnote{Source code available at \url{//github.com/wz16/DVA}.}. By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.

Objective: Function is increasingly recognized as an important indicator of whole-person health. This study evaluates the ability of publicly available large language models (LLMs) to accurately identify the presence of functioning information from clinical notes. We explore various strategies to improve the performance on this task. Materials and Methods: We collect a balanced binary classification dataset of 1000 sentences from the Mobility NER dataset, which was curated from n2c2 clinical notes. For evaluation, we construct zero-shot and few-shot prompts to query the LLMs whether a given sentence contains mobility functioning information. Two sampling techniques, random sampling and k-nearest neighbor (kNN)-based sampling, are used to select the few-shot examples. Furthermore, we apply a parameter-efficient prompt-based fine-tuning method to the LLMs and evaluate their performance under various training settings. Results: Flan-T5-xxl outperforms all other models in both zero-shot and few-shot settings, achieving a F1 score of 0.865 with a single demonstrative example selected by kNN sampling. In prompt-based fine-tuning experiments, this foundation model also demonstrates superior performance across all low-resource settings, particularly achieving an impressive F1 score of 0.922 using the full training dataset. The smaller model, Flan-T5-xl, requires fine-tuning with only 2.3M additional parameters to achieve comparable performance to the fully fine-tuned Gatortron-base model, both surpassing 0.9 F1 score. Conclusion: Open-source instruction-tuned LLMs demonstrate impressive in-context learning capability in the mobility functioning classification task. The performance of these models can be further improved by continuing fine-tuning on a task-specific dataset.

Spatial data can come in a variety of different forms, but two of the most common generating models for such observations are random fields and point processes. Whilst it is known that spectral analysis can unify these two different data forms, specific methodology for the related estimation is yet to be developed. In this paper, we solve this problem by extending multitaper estimation, to estimate the spectral density matrix function for multivariate spatial data, where processes can be any combination of either point processes or random fields. We discuss finite sample and asymptotic theory for the proposed estimators, as well as specific details on the implementation, including how to perform estimation on non-rectangular domains and the correct implementation of multitapering for processes sampled in different ways, e.g. continuously vs on a regular grid.

This paper launches a thorough discussion on the locality of local neural operator (LNO), which is the core that enables LNO great flexibility on varied computational domains in solving transient partial differential equations (PDEs). We investigate the locality of LNO by looking into its receptive field and receptive range, carrying a main concern about how the locality acts in LNO training and applications. In a large group of LNO training experiments for learning fluid dynamics, it is found that an initial receptive range compatible with the learning task is crucial for LNO to perform well. On the one hand, an over-small receptive range is fatal and usually leads LNO to numerical oscillation; on the other hand, an over-large receptive range hinders LNO from achieving the best accuracy. We deem rules found in this paper general when applying LNO to learn and solve transient PDEs in diverse fields. Practical examples of applying the pre-trained LNOs in flow prediction are presented to confirm the findings further. Overall, with the architecture properly designed with a compatible receptive range, the pre-trained LNO shows commendable accuracy and efficiency in solving practical cases.

The lack of an available emotion pathology database is one of the key obstacles in studying the emotion expression status of patients with dysarthria. The first Chinese multimodal emotional pathological speech database containing multi-perspective information is constructed in this paper. It includes 29 controls and 39 patients with different degrees of motor dysarthria, expressing happy, sad, angry and neutral emotions. All emotional speech was labeled for intelligibility, types and discrete dimensional emotions by developed WeChat mini-program. The subjective analysis justifies from emotion discrimination accuracy, speech intelligibility, valence-arousal spatial distribution, and correlation between SCL-90 and disease severity. The automatic recognition tested on speech and glottal data, with average accuracy of 78% for controls and 60% for patients in audio, while 51% for controls and 38% for patients in glottal data, indicating an influence of the disease on emotional expression.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

北京阿比特科技有限公司