亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus the computational task is to estimate a time-evolving density $\rho(v, t)$ given noisy observations of the true density $\rho^\dagger$; this contrasts with the standard filtering problem based on observations of the state $v$. The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities $\rho$. However, for the purposes of tractability, we seek algorithms in state space; specifically we introduce a mean field state space model and, using interacting particle system approximations to this model, we propose an ensemble method. We refer to the resulting methodology as the ensemble Fokker-Planck filter (EnFPF). Under certain restrictive assumptions we show that the EnFPF approximates the Kalman-Bucy filter for the Fokker-Planck equation, which is the exact solution of the infinite-dimensional filtering problem; our numerical experiments show that the methodology is useful beyond this restrictive setting. Specifically the experiments show that the EnFPF is able to correct ensemble statistics, to accelerate convergence to the invariant density for autonomous systems, and to accelerate convergence to time-dependent invariant densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles and to turbulence modelling.

相關內容

We deal with a normal form for context-free grammars, called Dyck normal form. This normal form is a syntactical restriction of the Chomsky normal form, in which the two nonterminals occurring on the right-hand side of a rule are paired nonterminals. This pairwise property, along with several other terminal rewriting conditions, makes it possible to define a homomorphism from Dyck words to words generated by a grammar in Dyck normal form. We prove that for each context-free language L, there exist an integer K and a homomorphism phi such that L=phi(D'_K), where D'_K is a subset of D_K and D_K is the one-sided Dyck language over K letters. As an application we give an alternative proof of the inclusion of the class of even linear languages in AC1.

Building a single universal speech enhancement (SE) system that can handle arbitrary input is a demanded but underexplored research topic. Towards this ultimate goal, one direction is to build a single model that handles diverse audio duration, sampling frequencies, and microphone variations in noisy and reverberant scenarios, which we define here as "input condition invariant SE". Such a model was recently proposed showing promising performance; however, its multi-channel performance degraded severely in real conditions. In this paper we propose novel architectures to improve the input condition invariant SE model so that performance in simulated conditions remains competitive while real condition degradation is much mitigated. For this purpose, we redesign the key components that comprise such a system. First, we identify that the channel-modeling module's generalization to unseen scenarios can be sub-optimal and redesign this module. We further introduce a two-stage training strategy to enhance training efficiency. Second, we propose two novel dual-path time-frequency blocks, demonstrating superior performance with fewer parameters and computational costs compared to the existing method. All proposals combined, experiments on various public datasets validate the efficacy of the proposed model, with significantly improved performance on real conditions. Recipe with full model details is released at //github.com/espnet/espnet.

Polar codes are the first class of structured channel codes that achieve the symmetric capacity of binary channels with efficient encoding and decoding. In 2019, Arikan proposed a new polar coding scheme referred to as polarization-adjusted convolutional (PAC)} codes. In contrast to polar codes, PAC codes precode the information word using a convolutional code prior to polar encoding. This results in material coding gain over polar code under Fano sequential decoding as well as successive cancellation list (SCL) decoding. Given the advantages of SCL decoding over Fano decoding in certain scenarios such as low-SNR regime or where a constraint on the worst case decoding latency exists, in this paper, we focus on SCL decoding and present a simplified SCL (SSCL) decoding algorithm for PAC codes. SSCL decoding of PAC codes reduces the decoding latency by identifying special nodes in the decoding tree and processing them at the intermediate stages of the graph. Our simulation results show that the performance of PAC codes under SSCL decoding is almost similar to the SCL decoding while having lower decoding latency.

In the web era, graph machine learning has been widely used on ubiquitous graph-structured data. As a pivotal component for bolstering web security and enhancing the robustness of graph-based applications, the significance of graph anomaly detection is continually increasing. While Graph Neural Networks (GNNs) have demonstrated efficacy in supervised and semi-supervised graph anomaly detection, their performance is contingent upon the availability of sufficient ground truth labels. The labor-intensive nature of identifying anomalies from complex graph structures poses a significant challenge in real-world applications. Despite that, the indirect supervision signals from other tasks (e.g., node classification) are relatively abundant. In this paper, we propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE. Firstly, by coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies. Secondly, MITIGATE quantifies the informativeness of nodes by the confidence difference across tasks, allowing samples with conflicting predictions to provide informative yet not excessively challenging information for subsequent training. Finally, to enhance the likelihood of selecting representative nodes that are distant from known patterns, MITIGATE adopts a masked aggregation mechanism for distance measurement, considering both inherent features of nodes and current labeled status. Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection. Our code is publicly available at: //github.com/AhaChang/MITIGATE.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

北京阿比特科技有限公司