Detecting latent confounders from proxy variables is an essential problem in causal effect estimation. Previous approaches are limited to low-dimensional proxies, sorted proxies, and binary treatments. We remove these assumptions and present a novel Proxy Confounder Factorization (PCF) framework for continuous treatment effect estimation when latent confounders manifest through high-dimensional, mixed proxy variables. For specific sample sizes, our two-step PCF implementation, using Independent Component Analysis (ICA-PCF), and the end-to-end implementation, using Gradient Descent (GD-PCF), achieve high correlation with the latent confounder and low absolute error in causal effect estimation with synthetic datasets in the high sample size regime. Even when faced with climate data, ICA-PCF recovers four components that explain $75.9\%$ of the variance in the North Atlantic Oscillation, a known confounder of precipitation patterns in Europe. Code for our PCF implementations and experiments can be found here: //github.com/IPL-UV/confound_it. The proposed methodology constitutes a stepping stone towards discovering latent confounders and can be applied to many problems in disciplines dealing with high-dimensional observed proxies, e.g., spatiotemporal fields.
Rate split multiple access (RSMA) has been proven as an effective communication scheme for 5G and beyond, especially in vehicular scenarios. However, RSMA requires complicated iterative algorithms for proper resource allocation, which cannot fulfill the stringent latency requirement in resource constrained vehicles. Although data driven approaches can alleviate this issue, they suffer from poor generalizability and scarce training data. In this paper, we propose a fractional programming (FP) based deep unfolding (DU) approach to address resource allocation problem for a weighted sum rate optimization in RSMA. By carefully designing the penalty function, we couple the variable update with projected gradient descent algorithm (PGD). Following the structure of PGD, we embed few learnable parameters in each layer of the DU network. Through extensive simulation, we have shown that the proposed model-based neural networks has similar performance as optimal results given by traditional algorithm but with much lower computational complexity, less training data, and higher resilience to test set data and out-of-distribution (OOD) data.
Image aesthetics assessment (IAA) is attracting wide interest with the prevalence of social media. The problem is challenging due to its subjective and ambiguous nature. Instead of directly extracting aesthetic features solely from the image, user comments associated with an image could potentially provide complementary knowledge that is useful for IAA. With existing large-scale pre-trained models demonstrating strong capabilities in extracting high-quality transferable visual and textual features, learnable queries are shown to be effective in extracting useful features from the pre-trained visual features. Therefore, in this paper, we propose MMLQ, which utilizes multi-modal learnable queries to extract aesthetics-related features from multi-modal pre-trained features. Extensive experimental results demonstrate that MMLQ achieves new state-of-the-art performance on multi-modal IAA, beating previous methods by 7.7% and 8.3% in terms of SRCC and PLCC, respectively.
The commonly used caching policies, such as LRU or LFU, exhibit optimal performance only for specific traffic patterns. Even advanced Machine Learning-based methods, which detect patterns in historical request data, struggle when future requests deviate from past trends. Recently, a new class of policies has emerged that makes no assumptions about the request arrival process. These algorithms solve an online optimization problem, enabling continuous adaptation to the context. They offer theoretical guarantees on the regret metric, which is the gap between the gain of the online policy and the gain of the optimal static cache allocation in hindsight. Nevertheless, the high computational complexity of these solutions hinders their practical adoption. In this study, we introduce a groundbreaking gradient-based online caching policy, the first to achieve logarithmic computational complexity relative to catalog size along with regret guarantees. This means our algorithm can efficiently handle large-scale data while minimizing the performance gap between real-time decisions and optimal hindsight choices. As requests arrive, our policy dynamically adjusts the probabilities of including items in the cache, which drive cache update decisions. Our algorithm's streamlined complexity is a key advantage, enabling its application to real-world traces featuring millions of requests and items. This is a significant achievement, as traces of this scale have been out of reach for existing policies with regret guarantees. To the best of our knowledge, our experimental results show for the first time that the regret guarantees of gradient-based caching policies bring significant benefits in scenarios of practical interest.
Modular approaches that use a different composition of modules for each problem are a promising direction in continual learning (CL). However, searching through the large, discrete space of module compositions is challenging, especially because evaluating a composition's performance requires a round of neural network training. We address this challenge through a modular CL framework, PICLE, that uses a probabilistic model to cheaply compute the fitness of each composition, allowing PICLE to achieve both perceptual, few-shot and latent transfer. The model combines prior knowledge about good module compositions with dataset-specific information. We evaluate PICLE using two benchmark suites designed to assess different desiderata of CL techniques. Comparing to a wide range of approaches, we show that PICLE is the first modular CL algorithm to achieve perceptual, few-shot and latent transfer while scaling well to large search spaces, outperforming previous state-of-the-art modular CL approaches on long problem sequences.
A major obstacle to the development of effective monocular depth estimation algorithms is the difficulty in obtaining high-quality depth data that corresponds to collected RGB images. Collecting this data is time-consuming and costly, and even data collected by modern sensors has limited range or resolution, and is subject to inconsistencies and noise. To combat this, we propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer. We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data. We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
Depth estimation is crucial for interpreting complex environments, especially in areas such as autonomous vehicle navigation and robotics. Nonetheless, obtaining accurate depth readings from event camera data remains a formidable challenge. Event cameras operate differently from traditional digital cameras, continuously capturing data and generating asynchronous binary spikes that encode time, location, and light intensity. Yet, the unique sampling mechanisms of event cameras render standard image based algorithms inadequate for processing spike data. This necessitates the development of innovative, spike-aware algorithms tailored for event cameras, a task compounded by the irregularity, continuity, noise, and spatial and temporal characteristics inherent in spiking data.Harnessing the strong generalization capabilities of transformer neural networks for spatiotemporal data, we propose a purely spike-driven spike transformer network for depth estimation from spiking camera data. To address performance limitations with Spiking Neural Networks (SNN), we introduce a novel single-stage cross-modality knowledge transfer framework leveraging knowledge from a large vision foundational model of artificial neural networks (ANN) (DINOv2) to enhance the performance of SNNs with limited data. Our experimental results on both synthetic and real datasets show substantial improvements over existing models, with notable gains in Absolute Relative and Square Relative errors (49% and 39.77% improvements over the benchmark model Spike-T, respectively). Besides accuracy, the proposed model also demonstrates reduced power consumptions, a critical factor for practical applications.
When estimating causal effects from observational studies, researchers often need to adjust for many covariates to deconfound the non-causal relationship between exposure and outcome, among which many covariates are discrete. The behavior of commonly used estimators in the presence of many discrete covariates is not well understood since their properties are often analyzed under structural assumptions including sparsity and smoothness, which do not apply in discrete settings. In this work, we study the estimation of causal effects in a model where the covariates required for confounding adjustment are discrete but high-dimensional, meaning the number of categories $d$ is comparable with or even larger than sample size $n$. Specifically, we show the mean squared error of commonly used regression, weighting and doubly robust estimators is bounded by $\frac{d^2}{n^2}+\frac{1}{n}$. We then prove the minimax lower bound for the average treatment effect is of order $\frac{d^2}{n^2 \log^2 n}+\frac{1}{n}$, which characterizes the fundamental difficulty of causal effect estimation in the high-dimensional discrete setting, and shows the estimators mentioned above are rate-optimal up to log-factors. We further consider additional structures that can be exploited, namely effect homogeneity and prior knowledge of the covariate distribution, and propose new estimators that enjoy faster convergence rates of order $\frac{d}{n^2} + \frac{1}{n}$, which achieve consistency in a broader regime. The results are illustrated empirically via simulation studies.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.